Supplementary Material for "Needle-syringe programs are costeffective in Eastern Europe and Central Asia: costing, data synthesis, modeling and economics for nine case study countries"

Description of mathematical model	2
Needle Exchange Program Evaluation Model (NEPEM) Soft	ware15
Main menu	
Data entry	
Downloading software	. Error! Bookmark not defined.
Country data inputs	21
Investments in NSPs	
Costs of ART	
Non-ART healthcare costs	
Health state utilities	
Model biological parameters	40
Calibration: model outcomes versus available data	
Model epidemic projections based on pre-NSP conditions	
References	

Description of mathematical model

A mathematical model was developed to estimate HIV and HCV incidence and other disease outcomes. The model tracks the population of injecting drug users (PWID), and it was formulated to describe the change in the number of people in different disease states over time. The model tracks the entry of new injectors into the uninfected population and those who die, rates differentiated by health state, over time.

A schematic diagram of compartments in the HIV and HCV transmission model for PWID is presented in Figure S1. The change in the number of people in each compartment was tracked mathematically by formulating a system of ordinary differential equations. Twenty compartments represent PWID who are infected with HIV: CD4+ T cell levels (>500 cells per μ l, 350-500 cells per μ l, 200-350 cells per μ l, and <200 cells per μ l) for both diagnosed and undiagnosed; then HIV diagnosed individuals may initiate antiretroviral therapy for first-line treatment; for those who failed treatment may receive second-line treatment; a twenty-first compartment represents uninfected PWID. The description of health states are shown in Table S1. Twenty-one compartments represent PWID who are infected with HCV: in acute stage, fibrosis stages F0, F1, F2, F3, and F4, whether they are diagnosed, undiagnosed or receiving treatment. People infected with HCV who have advanced fibrosis can progress to clinical outcomes of liver failure, hepatocellular carcinoma, or may receive a liver transplant. It is assumed that individuals who progress to these three clinical outcomes no longer receive HCV treatment due to the severity of their health status.

Figure S1: Schematic diagram of HIV and HCV disease progression among PWID in Australia. Each arrow represents the change in the number of people in the population moving from one health compartment state to the other compartment.

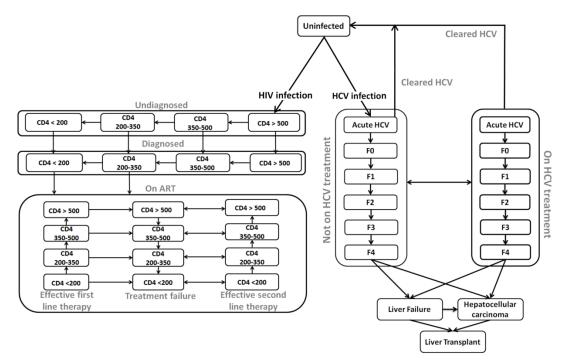


Table S1: Number of compartments in HIV/HCV model

HIV	HCV
1. Uninfected HIV	1. Uninfected HCV
2-5. Infected, Undiagnosed (CD4>500, CD4 350-	2-7. Infected, Undiagnosed (Acute, F0-F4)
500,	
CD4 200-350, CD4<200)	
6-9. Infected, Diagnosed (CD4>500, CD4 350-	8-13. Infected, Diagnosed (Acute, F0-F4)
500, CD4	
200-350, CD4<200)	
10-13. Infected, 1stline ART (CD4>500, CD4 350-	14-19. Infected, Treatment (Acute, F0-F4)
500,	
CD4 200-350, CD4<200)	
14-17. Infected, Failure of ART (CD4>500, CD4	20-22. Liver failure, hepatocellular carcinoma, liver
350-500,	Transplant
CD4 200-350, CD4<200)	
18-21. Infected, 2ndline ART (CD4>500, CD4 350-	
500,	
CD4 200-350, CD4<200)	

One ordinary differential equation (ODE) was developed to describe the change in the number of people in each of these compartmental health states over time, for 43 ODEs in total. The rate of change in the numbers of people in each compartment depends on the net effect of rates of people entering the health state and the rate of leaving the health state. Each ODE was mathematically described based on standard translation from the schematic diagram of the model presented in Figure S1 [1] (with the addition of rates of initiation of injecting and leaving the population (background death/migration/cessation of injecting, drug-related death, health state-specific death)). For example, the ODE representing the rate of change in the number of people uninfected with HIV can be written as following:

Change in
uninfecteds Entry into

$$\frac{dS}{dt} = \pi - \begin{pmatrix} Force \ of \\ HIV \ tyfection \\ \lambda + \mu + \mu_D \end{pmatrix} S$$

where *S* is the number of uninfected active PWID, π is the annual number of people who commence injecting drugs, μ is the mortality rate among general population, μ_D is the drug-related death rate, and λ is the 'force of infection' or per-capita rate at which susceptible PWID acquire infection. The complete lists of model parameters for HIV and HCV transmission and disease progression are in Table S9 and S10.

The force of infection is dependent on other health states (namely, numbers of people in the infected health states). To calculate the force of infection, we assume that each PWID injects an average of n times per year and denote the receptive syringe sharing rate (RSS) as s, and the prevalence in the population as P(t). The probability of infection from a contaminated syringe per use is denoted by β .

We assume that syringe cleaning has effectiveness ε_c and cleaning occurs in p_c proportion of shared injections. Given these definitions, the force of infections is given mathematically by:

$$\lambda = (1 - (1 - (1 - p_c \varepsilon_c)\beta)^{ns})P(t).$$

The model is calibrated to the data provided using a mixture of optimization and force-fitting. A force-fitting algorithm assumes an initial 100% accuracy in the epidemiological data and derives the distribution of behavioral data that would result in the epidemic trend. This algorithm preferentially gives greater weighting to epidemiological and biological indicators (e.g. prevalence and diagnoses) over behavioral indicators (e.g. self-reported drug usage) during the optimization process. This assumption is based on the fact that epideimological and biological indicators are derived from medical tests (e.g. screening and confirmation tests for HIV infection). These indicators are considered to be more reliable than self-reported behaviors that are subjected to recall bias and socially desirable responses. In contrast to a conventional fitting strategy that predicts epidemic trends based on behavioral patterns, force-fitting determines the likelihood of risk behaviors based on reported epidemiological/biological indicators. By comparing the derived distribution to the actual behavioral data, the fit to the epidemiological indicators is then adjusted to accommodate the discrepancies between the distributions. The adjustment is then repeated until the scenario with the least sum of weighted errors between model-simulated results and the actual data is reached within the given uncertainty bounds of both epidemiological and behavioral indicators. In this manner, the model is force-fitted to population size, HIV diagnoses, AIDS diagnoses, and number of people on HIV/HCV treatment. This method alters the source parameters to ensure that the model will match the given epidemiological data. Once these epidemiological data have been force-fitted, the model employs a trust-region-reflective algorithm on the biological model parameters (e.g., disease progression rates) to obtain the best fit (in the least square sense) to prevalence data. The trustregion reflective algorithm [2] is a gradient-descent algorithm that calculates the Hessian matrix (i.e., the second derivatives) of the function to be optimized in order to determine the step size (the "trust region") for the current iteration. It is a generalization of the Levenberg-Marguardt method [3] that allows hard limits on parameter values. The algorithm was invoked via the Isgnonlin function from the Optimization Toolbox in Matlab 2012a (The Mathworks). In some cases, the force-fitting and trust-region-reflective algorithms were unable to find a reasonable fit to the available data; in these cases, parameter value initializations were manually modified and the optimization algorithms were rerun. In all cases where this approach was used, the manually initialized fits had lower mean-squared error and were thus objectively better fits to the data. The optimized parameters thus obtained were used to produce the best-fit estimates presented in the report. Uncertainty estimates, in contrast, were not based on optimized parameter values, but rather by randomly sampling each parameter from within the limits provided in Tables S9 and S10, as described in the main text.

The complete list of ordinary differential equations depicting model in Figure S1 is as follows: <u>Uninfected IDUs</u>

$$\begin{aligned} \frac{\partial G}{\partial S} &= \widetilde{\pi} - \begin{pmatrix} Force \ of \\ HV \ infection \\ HV \ infection \\ HV \ infection \\ HCV \ infe$$

HCV-infected individuals

$$\frac{dI_{A}^{M}}{dt} = \frac{\sum_{\substack{New \text{ infections}\\ HIV \text{ infection}}} \sum_{\substack{New \text{ infections}\\ \lambda_{HCV}S} + (1 - \gamma_{A}^{M}) \gamma_{A}^{M} I_{A}^{MT} - \begin{pmatrix} Background & Drug-related & Exit \\ death & death & rate \\ \mu & + & \mu_{D} & + \tilde{\xi} \end{pmatrix}$$

$$\frac{Force \text{ of }}{F_{MIV}} + \frac{Forgress \text{ to } Commence \\ Forgress \text{ treatment } (acute) \\ + \tilde{\lambda}_{HIV} + \tilde{\tau}_{A}^{M} + \tilde{\eta}_{A} \end{pmatrix} I_{A}^{M}$$

$$\frac{\widetilde{dI}_{F0}^{M}}{\widetilde{dt}} = \tau_{A}^{M} I_{A}^{M} + (1 - \gamma_{F0}^{M}) v_{F}^{M} I_{F0}^{MT} - \begin{pmatrix} Background & Drug-related & Exit \\ death & death & rate \\ \widetilde{\mu} & + & \widetilde{\mu_{D}} & + & \widetilde{\xi} \end{pmatrix}$$

Force of Commence Progress to
HIV infection treatment (F0) F1
+
$$\lambda_{HIV}$$
 + η_{F0} + τ_{F0}^{M} | I_{F0}^{M}

$$\frac{\widehat{dI}_{F1}^{M}}{dt} = \frac{\widehat{\tau}_{F01}^{M}I_{F0}^{M}}{\widehat{\tau}_{F01}^{M}I_{F0}^{M}} + \underbrace{(1 - \gamma_{F1}^{M})\nu_{F}^{M}I_{F1}^{MT}}_{(F1)} - \begin{pmatrix} Background Drug-related Exit death rate death rate \\ \widehat{\mu} + \widehat{\mu}_{D} + \widehat{\xi} \end{pmatrix} \\
= \frac{Force \ of}{HIV \ infection} \quad \underbrace{Commence}_{treatment} (F1) \quad F2 \\
+ \quad \widehat{\lambda}_{HIV} + \quad \widehat{\eta}_{F1} + \quad \widehat{\tau}_{F1}^{M} \end{pmatrix} I_{F1}^{M}$$

$$\frac{dI_{F2}^{M}}{dt} = \tau_{F1}^{M} I_{F1}^{M} + (1 - \gamma_{F2}^{M}) v_{F}^{M} I_{F2}^{MT} - \begin{pmatrix} Background Drug-related Exites and the trade death rate of the trade o$$

$$+ \overbrace{\lambda_{HIV}}^{HIV infection \ treatment \ (F2)} + \overbrace{\tau_{F2}}^{F3} + \overbrace{\tau_{F2}}^{M} \left| I_{F2}^{M} \right|$$

$$\frac{dI_{F3}^{M}}{dt} = \overbrace{\tau_{F2}^{M}I_{F2}}^{Progress from} + \overbrace{(1-\gamma_{F3}^{M})}^{Cease treatment} \bigvee_{F3}^{MT} - \left(\begin{array}{c} Background & Drug-related & Exit \\ death & death & rate \\ \hline \mu & + & \mu_{D} & + \overleftarrow{\xi} \end{array}\right)$$

$$+ \overbrace{\lambda_{HIV}}^{Force of} + \overbrace{\eta_{F3}}^{Commence} + \overbrace{\tau_{F3}}^{Progress to} + \overbrace{\tau_{F3}}^{K} + \overbrace{\eta_{F3}}^{K} + \overbrace{\tau_{F3}}^{M} \right) I_{F3}^{M}$$

Change in
F4 infecteds
$$\frac{dI_{F4}^{M}}{dt} = \tau_{F3}^{M} I_{F3}^{M} + (1 - \gamma_{F4}^{M}) v_{F}^{M} I_{F4}^{MT} - \begin{pmatrix} Background & Drug-related & Exite and the second death & death & rate and the second death & text and text and$$

Force of Commence Progress to Progress to HIV infection treatment (F4) liver failure
$$\mathcal{L}_{F4}$$
 \mathcal{L}_{HIV} + $\mathcal{\eta}_{F4}$ + $\mathcal{\tau}_{F4LF}^{M}$ + $\mathcal{\tau}_{F4HCC}^{M}$ \mathcal{L}_{F4}^{M}

Change in acute infecteds on treatment Commenced Drug-related death $+ \overset{Exit}{\xi} +$ Force of HIV infection (Background death $\frac{\overline{dI_A^{MT}}}{dt}$ treatment (acute) $\eta_A I_A^M$ \sim λ_{HIV} \sim μ μ_D = + $+\overbrace{(1-\gamma^M_A)\mathcal{V}^M_A}^{Cease \ treatment}+$ $+ \frac{\tau_A^{MT}}{\tau_A^{MT}}$ Viral clearance on treatment (acute) $\overbrace{\gamma^M_A}^M v^M_A$ I_A^{MT} +

Change in F0
infecteds on
treatment

$$\frac{dI_{F0}^{MT}}{dt} = \overbrace{\tau_A^{MT}I_A^{MT}}^{Progress from acute} \overbrace{treatment}^{Commenced} + \overbrace{\eta_{F0}I_{F0}}^{M} - \left(\begin{matrix} Background & Drug-related & Exit \\ death & death & rate \\ death & death & rate \\ \hline \mu & + & \mu_D & + & \overleftarrow{\zeta} \end{matrix}\right)$$
Force of Cease treatment (F0) on treatment (F0) during treatment (F0)

$$+ \frac{\lambda_{HIV}}{\lambda_{HIV}} + (1 - \gamma_{F0}^{M})v_{F}^{M} + \frac{\gamma_{F0}^{M}v_{F}^{M}}{\gamma_{F0}^{M}v_{F}^{M}} + \frac{\tau_{F0}^{MT}}{\tau_{F0}^{MT}} \right) I_{F0}^{MT}$$

Change in F1
infecteds on
treatment

$$\frac{dI_{F1}^{MT}}{dt} = \underbrace{\tau_{F0}^{MT}I_{F0}^{MT}}_{HV infection} + \underbrace{\eta_{F1}}_{F1}I_{F1}^{M} - \begin{bmatrix}Background Drug-related Exit
death death rate
death death rate
$$\frac{\partial at}{\partial t} + \frac{\partial at}{\partial t}$$$$

$$+ \lambda_{HIV} + (1 - \gamma_{F1}^{M}) v_{F}^{M} + \gamma_{F1}^{M} v_{F}^{M} + \tau_{F1}^{MT} \int_{F1}^{M} I_{F1}^{M}$$

$$\frac{GL}{I} = \frac{MT}{T_{F1}} + \frac{MT}{T_{F1}} + \frac{MT}{T_{F1}} + \frac{MT}{T_{F2}} +$$

$$\frac{dI_{F3}^{MT}}{dt} = \underbrace{\tau_{F2}^{MT}I_{F2}^{MT}}_{HIV} + \underbrace{\eta_{F3}I_{F3}^{M}}_{F3} - \underbrace{\beta_{F3}^{K}I_{F3}^{M}}_{F3} - \underbrace{\beta_{F3}^{K}I_{F3}^{M}}_{HIV} + \underbrace{\eta_{F3}I_{F3}^{M}}_{HIV} + \underbrace{\eta_{F3}I_{F3}^{M}}_{HIV} + \underbrace{\eta_{F3}I_{F3}^{M}}_{F3} - \underbrace{\beta_{F3}^{K}I_{F3}^{M}}_{F3} + \underbrace{\eta_{F3}I_{F3}^{M}}_{HIV} + \underbrace{\eta_{F3}I_{F3}^{M}}_{F3} + \underbrace{\eta_{F3}I_{F3}^{M}}_{HIV} + \underbrace{\eta_{F3}I_{F3}^{M}}_$$

Change in F4 infecteds on treatment $\frac{dI_{F4}^{MT}}{dt} = \tau_{F3}^{MT} I_{F3}^{MT} + \eta_{F4} I_{F4}^{M} - \begin{pmatrix} Background Drug-related Exit adapted Exit adapted for the treatment (F4) adapted for the treatment of the treatment$

Force of
HIV infection
+
$$\lambda_{HIV}$$
 + $(1 - \gamma_{F4}^{M})\nu_{F}^{M}$ + $\gamma_{F4}^{M}\nu_{F}^{M}$ | I_{F4}^{MT}

$$\frac{dI_{LF}^{M}}{dt} = \tau_{F4LF}^{M} I_{F4}^{M} - \begin{pmatrix} Background & Liver failure & population \\ death & related death & with liver disease \\ \mu & \mu_{LF} & \mu_{LF$$

$$\frac{dI_{HCC}^{M}}{dt} = \tau_{F4HCC}^{M} I_{F4}^{M} + \tau_{LFHC}^{M} I_{LF}^{M} + \tau_{LFHCC}^{M} I_{LF}^{M} - \begin{pmatrix} Background & HCC & population \\ death & related death & with liver disease \\ \mu & + \mu_{HCC} & + \xi_{L} & + \tau_{HCCLT} \end{pmatrix} I_{HCC}^{M} I_{HCC}^{M} - \begin{pmatrix} Background & HCC & population \\ death & related death & with liver disease \\ \mu & + \mu_{HCC} & + \xi_{L} & + \tau_{HCCLT} \end{pmatrix} I_{HCC}^{M} + \frac{Change in}{Liver transplants} Progress from HCC \\ \frac{dI_{LT}^{M}}{dt} & = \tau_{LFLT}^{M} I_{LF}^{M} + \tau_{HCCLT}^{M} I_{HCC}^{M} - \begin{pmatrix} Background & Liver transplant & population \\ each & related death & with liver disease \\ \mu & + \mu_{LT} & + \xi_{L} & \end{pmatrix} I_{LT}^{M}$$

HIV-infected individuals

$$\frac{dI_{S00}^{(CDJ>500)}}{dI} = \frac{New infections}{\lambda_{HIV}S} + \frac{V_{C}I_{500}^{A}}{V_{C}I_{500}^{A}} - \left(\begin{array}{c} Background \\ deah \\ deah \\ \hline \mu \\ + \\ \hline \mu_{D} \\$$

$$\frac{dI_{200_350}^{M}}{dt} = \tau_{350_500}^{M} I_{350_500}^{M} I_{350_500}^{M} + \psi_{C} I_{200_350}^{A} - \begin{pmatrix} Background Drug-related Exit detah \\ death death rate (200 < CD4 < 350) \\ \mu + \mu_{D} + \xi + \mu_{200_350} \end{pmatrix}$$

$$\frac{G_{infecteds}}{G_{infecteds}} \left(\frac{M}{200} \right) = \underbrace{\tau_{200_350}^{M} I_{200_350}^{M}}_{I_{200_350}} \left(\frac{S_{pontane ous HCV}}{(acute, CD4<200)} \right) + \underbrace{\psi_{C}I_{200}^{A}}_{Q_{200}} \left(\frac{Background}{death} \right) \left(\frac{Drug-related}{death} \right) + \underbrace{Exit}_{rate} \left(\frac{HIV-related}{death} (CD4<200) \right) + \underbrace{\psi_{C}I_{200}^{A}}_{Q_{200}} \right) + \underbrace{\psi_{C}I_{200}^{A}}_{Q_{200}} \left(\frac{Background}{\mu} \right) + \underbrace{\psi_{D}}_{D} + \underbrace{\xi}_{L} + \underbrace{\psi_{D}}_{Q_{200}} \right) + \underbrace{\psi_{C}I_{200}^{A}}_{(CD4<200, -1)} + \underbrace{\psi_{C}I_{200}^{A}}_{(CD4<200, -1)} + \underbrace{\psi_{D}}_{(CD4<200, -1)} + \underbrace{\psi_{D}}_{(CD4<200, -1)} + \underbrace{\psi_{D}}_{(DV+infection)} \right) + \underbrace{\psi_{C}I_{200}^{A}}_{(DV+infection)} + \underbrace{\psi_{D}}_{(DV+infection)} + \underbrace{\psi_{D}}_{(D$$

Change in infecteds (CD4>500) during 1st treatment

$$\frac{dI_{500l_{ist}}^{M}}{dt} = \underbrace{\eta_{500}^{U}I_{500}^{M}}_{titrest} + \underbrace{\eta_{500}^{U}I_{500}^{M}}_{titrest} + \underbrace{\psi_{C}I_{500l_{ist}}^{A}}_{HCV} + \underbrace{\psi_{C}I_{500}^{A}I_{500}^{M}}_{titrest} + \underbrace{\psi_{C}I_{500l_{ist}}^{A}}_{titrest} + \underbrace{\psi_{C}I_{500l_{ist}}^{A}}_{titrest} + \underbrace{\psi_{C}I_{500l_{ist}}^{A}}_{titrest} + \underbrace{\psi_{C}I_{500l_{ist}}^{A}}_{titrest} + \underbrace{\psi_{C}I_{500l_{ist}}^{M}}_{titrest} + \underbrace{\psi_{C}I_{500l_{ist}}^{M}}_{titrest} + \underbrace{\psi_{C}I_{500l_{ist}}^{M}}_{titrest} + \underbrace{\psi_{C}I_{500l_{ist}}^{M}}_{titrest} + \underbrace{\psi_{C}I_{500l_{ist}}^{M}}_{titrest} + \underbrace{\psi_{C}I_{500l_{ist}}^{A}}_{titrest} + \underbrace{\psi_{C}I_{500l_{ist}}^{M}}_{titrest} + \underbrace{\psi_{C}I_{500l_{ist}}^{M}}_$$

Change in infecteds (350<CD4<500) during 1st treatment

$$\frac{dI_{350_500_{lst}}^{M}}{dt} = \overbrace{\eta_{350_500}^{U}I_{350_500}}^{Commenced 1st line} \\ \overbrace{\eta_{350_500}^{U}I_{350_500}}^{Commenced 1st line} \\ = \overbrace{\eta_{350_500}^{U}I_{350_500}}^{Commenced 1st line} \\ \overbrace{\eta_{350_500}^{U}I_{350_500}}^{Spontaneous HCV} \\ \overbrace{(acute, 350$$

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} Exit \\ rate \\ rate \\ \end{array} \begin{array}{c} HIV\text{-related} \\ death (350 < CD4 < 500) \\ \end{array} \begin{array}{c} Force \ of \\ HCV \ infection \\ \end{array} \begin{array}{c} Viral \ rebound \\ (350 < CD4 < 500) \\ \end{array} \begin{array}{c} Viral \ supression \\ (350 < CD4 < 500) \\ \end{array} \begin{array}{c} Viral \ supression \\ (350 < CD4 < 500) \\ \end{array} \begin{array}{c} Viral \ supression \\ \end{array} \end{array} \begin{array}{c} Viral \ supression \\ \end{array} \begin{array}{c} Viral \ supression \\ \end{array} \end{array} \begin{array}{c} Viral \ supression \\ \end{array} \end{array} \end{array} \end{array}$$

Change in infecteds (200<CD4<350) during 1st treatment

$$\frac{dI_{200_{350_{1st}}}^{M}}{dt} = \underbrace{\eta_{200_{350}}^{U}I_{200_{350}}}_{ist} HIV-related}_{kit} + \underbrace{\psi_{C}I_{200_{350}_{1st}}^{A}}_{HCV} + \underbrace{\psi_{C}I_{200_{350}_{1st}}^{A}}_{(200$$

Change in infecteds (CD4<200) during 1st treatment

$$\frac{dI_{200_{lst}}^{M}}{dt} = \eta_{200}^{U}I_{200}^{M} + \psi_{C}I_{200_{lst}}^{A} - \begin{pmatrix} Background & Drug-related \\ death & death \\ \mu & + \mu_{D} \end{pmatrix}$$

$$\begin{array}{c} \begin{array}{c} Exit \\ rate \\ rate \\ \end{array} \begin{array}{c} HIV\text{-related} \\ death (CD4 < 200) \\ \end{array} \begin{array}{c} Force \ of \\ HCV \ infection \\ \end{array} \begin{array}{c} Viral \ rebound \\ (CD4 < 200) \\ \end{array} \begin{array}{c} Viral \ supression \\ (CD4 < 200) \\ \end{array} \end{array} \end{array} \right) \\ + \begin{array}{c} \overleftarrow{\zeta} \\ \overleftarrow{\zeta} \end{array} + \begin{array}{c} \overleftarrow{\mu}_{200} \\ \end{array} \begin{array}{c} + \end{array} \begin{array}{c} \overleftarrow{\lambda}_{HCV} \\ \end{array} \begin{array}{c} + \end{array} \begin{array}{c} \overleftarrow{\phi}_{200} \\ \end{array} \begin{array}{c} + \end{array} \begin{array}{c} \overleftarrow{\phi}_{200} \\ \end{array} \end{array} \right) \\ \end{array} \begin{array}{c} HV \\ \end{array} \begin{array}{c} HV \\ HV \\ HV \\ \end{array} \right) \\ \end{array} \right) \\ I \\ \begin{array}{c} M \\ 200_{1st} \end{array}$$

Change in treatment failure infecteds (CD4>500)

$$\frac{dI_{500_{Fail}}^{M}}{dt} = \overline{\eta_{500}^{D}I_{500}^{M}} + \overline{\psi_{C}I_{500_{Fail}}^{A}} + \overline{\phi_{500}I_{500_{1st}}^{M}} + \overline{\phi_{500}I_{500_{1st}}^{M}} + \overline{\phi_{500}^{S}I_{500_{2nd}}^{M}} - \begin{pmatrix} Backgrow \\ death \\ \phi \\ \delta \\ \delta \\ \mu \end{pmatrix}$$

$$\begin{array}{c} Drug-related \\ death \\ rate \\ \mu_D \\ + \\ \end{array} \begin{array}{c} HIV-related \\ death \\ \Gamma \\ S00 \\ \end{array} \begin{array}{c} Force of \\ HCV \\ Infection \\ HCV \\ Infection \\ \end{array} \begin{array}{c} Progress to \\ (350 < CD4 < 500) \\ T \\ S00 \\ \end{array} \begin{array}{c} Commence 2nd line \\ Iherapy (CD4 > 500) \\ Iherapy (CD4 > 500) \\ T \\ S00 \\ \end{array} \end{array} \right)$$

Change in treatment failure infecteds (350<CD4<500)

$$\frac{dI_{350-500}^{(350-CD4+500)}}{dt} = \frac{C_{ommenced Ist line}}{\eta_{350-500}^{D}I_{350-500}^{M}} + \frac{S_{pontaneous HCV}}{(acute, 350-CD4+500)} + \frac{V_{iral rebound}}{(acute, 350-CD4+500)} + \frac{V_{iral rebound}}{(acute, 350-CD4+500)} + \frac{V_{iral rebound}}{(350-CD4+500)} +$$

Change in treatment failure infecteds (200<CD4<350)

$$\frac{dI_{200_350}^{M}}{dt} = \frac{\int_{200_350}^{D}I_{200_350}^{M}}{\int_{200_350}^{D}I_{200_350}^{M}I_{200_350}^{M}} + \frac{\int_{200_350}^{D}I_{200_350}^{M}I_{200_350}^{$$

$$\frac{dII_{500_{2nd}}^{M}}{dt} = \overbrace{\sigma_{500}I_{500_{Fall}}^{M}}^{Spontaneous HCV} + \overbrace{\psi_{c}I_{500_{2nd}}^{A}}^{Spontaneous HCV}} + \overbrace{\psi_{c}I_{500_{2nd}}^{A}}^{Spontaneous HCV}} + \overbrace{\psi_{c}I_{500_{2nd}}^{M}}^{Spontaneous HCV}} + \overbrace{\psi_{c}I_{500_{2nd}}^{M}}}^{Spontaneous HCV}} + \overbrace{\psi_{c}I_{500_{2nd}}^{M}}} + \overbrace{\psi_{c}I_{500_{2nd}}^{M}}} + \overbrace{\psi_{c}I_{500_{2nd}}^{M}}} + \overbrace{\psi_{c}I_{500_{2nd}}^{M}}} + \overbrace{\psi_{c}I_{500_{2nd}}^{M}} + \overbrace{\psi_{c}I_{500_{2n}}^{M}} + \overbrace{\psi_{c}I_{500_{2nd}}^{M}} + \overbrace{$$

Change in infecteds (350<CD4<500) on 2nd line treatment

$$\frac{dI_{350_500_{2nd}}^{M}}{dt} = \overline{\sigma_{350_500}I_{350_500}}^{M}I_{350_500_{Fad}}^{M} + \overline{\psi_{C}I_{350_500_{2nd}}^{A}} + \overline{\psi_{C}I_{350_500_{2nd}}^{A}} + \overline{\psi_{C}I_{350_500_{2nd}}^{A}} + \overline{\psi_{C}I_{350_500_{2nd}}^{A}} + \overline{\psi_{200_350}}^{M}I_{200_350_{2nd}}^{M} - \left(\begin{matrix} Background decah \\ \hline & & \\ \mu \end{matrix}\right)$$

$$\begin{array}{c} Drug-related \\ death \\ + \\ \overline{\mu_D} \\ \end{array} \\ + \\ \overline{\xi} \\ + \\ \overline{\xi} \\ \end{array} \\ + \\ \overline{\mu_{350_500}} \\ \end{array} \\ + \\ \overline{\xi} \\ + \\ \overline{\mu_{350_500}} \\ \end{array} \\ + \\ \overline{\lambda_{HCV}} \\ + \\ \overline{\lambda_{HCV}} \\ + \\ \overline{\phi_{350_500}} \\ \end{array} \\ \begin{array}{c} 2nd \\ line \\ lherapy \\ (350 < CD4 < 500) \\ \overline{\xi} \\ + \\ \overline{\omega_{350_500}} \\ \end{array} \\ \overline{\lambda_{HCV}} \\ + \\ \overline{\phi_{350_500}} \\ \end{array} \\ \begin{array}{c} 2nd \\ line \\ lherapy \\ \overline{\xi} \\ \overline{\xi} \\ \overline{\xi} \\ \overline{\omega_{350_500}} \\ \end{array} \\ \begin{array}{c} M \\ \overline{\lambda_{HCV}} \\ \overline{\xi} \\ \overline{\xi}$$

Change in infecteds (200<CD4<350) on 2nd line treatment

$$\frac{dI_{200-350}^{M}}{dt} = \sigma_{200-350}^{M} I_{200-350}^{M} I$$

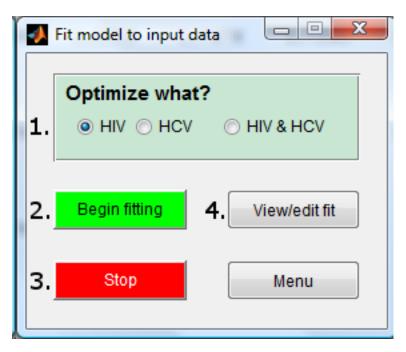
$$\frac{dI_{200_{2nd}}^{M}}{dt} = \sigma_{200}^{M} I_{200_{Fail}}^{M} + \psi_{C}I_{200_{2nd}}^{A} - \left(\begin{matrix} Background & Drug-related & Exites clearance clearance (acute, CD4<200) \\ \sigma_{200}I_{200_{Fail}}^{M} + \phi_{C}I_{200_{2nd}}^{A} - \left(\begin{matrix} Background & Drug-related & Exites clearance (acute, CD4<200) \\ \sigma_{200}I_{200_{Fail}}^{M} + \phi_{C}I_{200_{2nd}}^{A} - \left(\begin{matrix} Background & Drug-related & Exites clearance (acute, CD4<200) \\ \sigma_{200}I_{200_{Fail}}^{M} + \sigma_{C}I_{200_{2nd}}^{A} - \left(\begin{matrix} Background & Drug-related & Exites clearance (acute, CD4<200) \\ \sigma_{200}I_{200_{Fail}}^{M} + \sigma_{C}I_{200_{2nd}}^{A} - \left(\begin{matrix} Background & Drug-related & Exites clearance (acute, CD4<200) \\ \sigma_{200}I_{200_{Fail}}^{M} + \sigma_{C}I_{200_{2nd}}^{A} - \left(\begin{matrix} Background & Drug-related & Exites clearance (acute, CD4<200) \\ \sigma_{200}I_{200_{Fail}}^{M} + \sigma_{C}I_{200_{2nd}}^{A} - \left(\begin{matrix} Background & Drug-related & Exites clearance (acute, CD4<200) \\ \sigma_{200}I_{200_{Fail}}^{M} + \sigma_{C}I_{200_{2nd}}^{A} - \left(\begin{matrix} Background & Drug-related & Exites clearance (acute, CD4<200) \\ \sigma_{200}I_{200_{Fail}}^{M} + \sigma_{C}I_{200_{2nd}}^{A} - \left(\begin{matrix} Background & Drug-related & Exites clearance (acute, CD4<200) \\ \sigma_{200}I_{200_{Fail}}^{M} + \sigma_{C}I_{200_{2nd}}^{A} - \left(\begin{matrix} Background & Drug-related & Exites clearance (acute, CD4<200) \\ \sigma_{200}I_{200_{Fail}}^{M} + \sigma_{C}I_{200_{2nd}}^{A} - \left(\begin{matrix} Background & Drug-related & Exites clearance (acute, CD4<200) \\ \sigma_{200}I_{200_{2nd}}^{M} + \sigma_{C}I_{200_{2nd}}^{A} - \left(\begin{matrix} Background & Drug-related & Exites clearance (acute, CD4<200) \\ \sigma_{200}I_{200_{2nd}}^{M} + \sigma_{C}I_{200_{2nd}}^{A} - \left(\begin{matrix} Background & Drug-related & Exites clearance (acute, CD4<200) \\ \sigma_{200}I_{200_{2nd}}^{M} + \sigma_{C}I_{200_{2nd}}^{A} - \left(\begin{matrix} Background & Drug-related & Exites clearance (acute, CD4<200) \\ \sigma_{20}I_{20}I_{20}I_{20}I_{20}^{A} - \sigma_{C}I_{20}I_{20}I_{20}I_{20}I_{20}^{A} - \sigma_{C}I_{20}I_{$$

$$\begin{array}{c} {}^{HIV\text{-related}} & {}^{Viral\ re\ bound\ during}} \\ {}^{death} & {}^{Force\ of} & {}^{2nd\ line\ therapy} \\ {}^{(CD4<200)} & {}^{HCV\ infection} & {}^{(CD4<200)} & {}^{Viral\ supression} \\ + & {}^{HV}_{200} & + & {}^{V}_{HCV} & + & {}^{\Phi}_{200}^{S} & + & {}^{\Theta}_{200}^{U} \end{array} \right) I^{M}_{200_{2nd}}$$

Needle Exchange Program Evaluation Model (NEPEM) Software

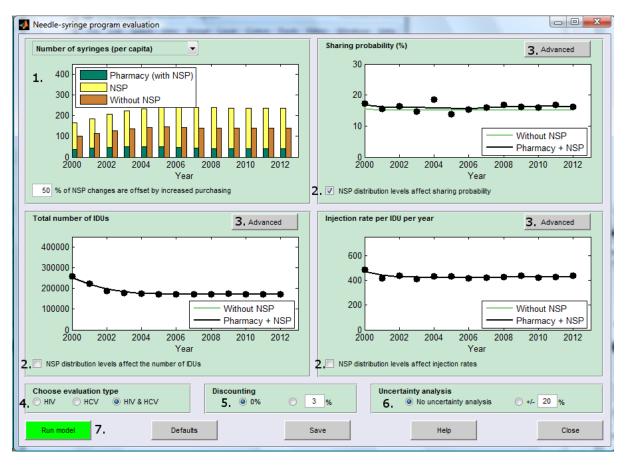
The NEPEM software was produced as a front-end to the model; this software can be downloaded from http://www.natcent.unsw.edu.au/sepph/software.html. The series of steps for using the software are shown in the following section. The software can be invoked by running BasePage.m from the Matlab interpreter.

Main menu

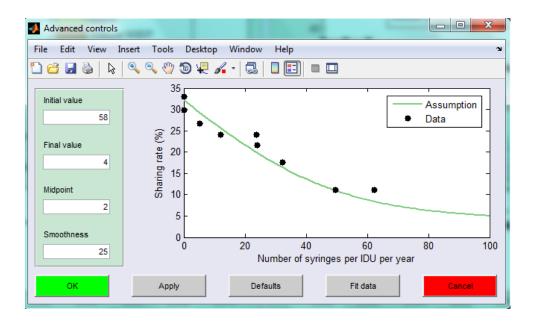

VEPEM
NEPEM
Needle Exchange Program Evaluation Model
Project management
1. Create project 2. Load project
Initialization
3. Inspect data 4. Optimize model
- Evaluation
5. Evaluate past 6. Forecast future
Help Close About

- 1. The Create new project button, this will open a dialogue box for the user to enter the name for the project. Next the user will be prompted to select an input file to populate the project.
- 2. The Load project button, by default all projects are saved in the 'Projects' folder in the root directory of the program. Select the .mat corresponding to the project you wish to run. Note, within the Projects folder, sub folders with the name

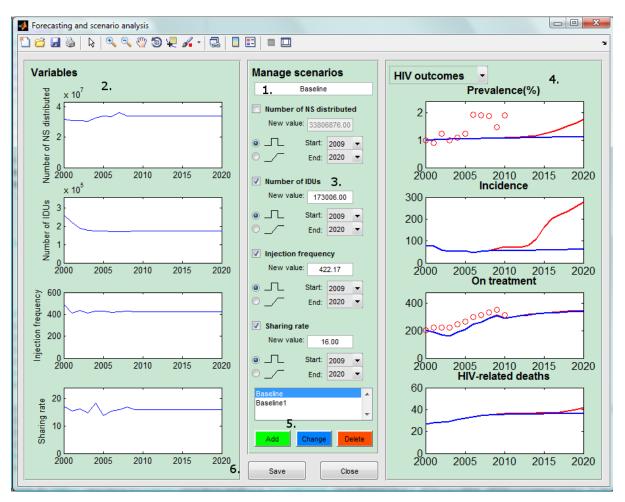
<Project name>_DataFiles will be present, users do not need to select these folders.


- 3. This button allows users to view a series of plots of the data contained in the project file, here they may double check the data.
- 4. This button will launch the Optimize model screen. See the Optimize Model section for more details.
- 5. This button launches the Economic analysis screen. See the Economic Analysis section for more details.
- 6. This button launches the Forecasting screen. See the Forecast section for more details.

Optimize Model



- 1. Select optimization for HIV, HCV, or both.
- 2. The Begin fit button will start the fitting process
- 3. The Stop button will halt the fitting process. Note, that it will not immediately stop the program, and must complete the set it is working on to ensure quality of results. Further, if you have selected 'Both' the stop button will only effect the current fit, so users may have to push it a second time to halt HCV fitting.
- 4. This will open a manual fitting page, where users can enter parameter values and observe the effect on the fit. Recommended for advanced users only.


Economic Analysis

- 1. Panels which contain the parameters that can be used to evaluate the effectiveness of Needle-syringe programs.
- 2. Checkboxes select whether the parameter will be effected by the distribution of NSPs.
- 3. Advanced options for determining the shape of the green line. This is one of the most important features of the software, from which associations between sharing levels and per capita needle-syringe distributions are determined (see below). This forms a key assumption in the counterfactual scenario. The other key assumption is the percentage of NSP changes that are offset by increased purchasing (value entered in top left panel above).
- 4. Select the evaluation type.
- 5. Select discounting option.
- 6. Choose whether or not to run a small sensitivity analysis.
- 7. Runs the model. Once complete, the user will be presented with plots of the fitting, and the option to view further plots, or a summary table of economic outcomes.

Forecast

- 1. Enter the name of the scenario.
- 2. Plots of the variables used for the outcomes.
- 3. Properties of the variables that can be edited. Checkboxes determine whether the given variable will be applied. The 'New value' field determines the datapoint that the variable will use. The radio buttons determine the transition to the new value, sudden, or linear. The Start and End years determine the period of time that the 'New value' is applied for.
- 4. The plot of the outcomes. The drop down list allows users to switch between HCV and HIV outcomes.
- 5. When variable properties are set, users add the scenario to the list. This will plot the outcome on the right hand side. To edit a scenario, select it in the list and press the Change button. The Delete button removes the selected scenario.
- 6. The Save button will save an Excel file of the results shown in the outcome plots.

Data entry

A template spreadsheet is provided for users to input data for the model. This helps ensure correct formatting for the program to read in the data. In cases where some data are incomplete, the software will fill in gaps using interpolation. In cases where there is only one datum point, the software will assume it to be a constant for the entire time series. Although users can enter data for males and females, there are no separate categories for sex in the model. The software will use a weighted average based on the population figures to determine an 'overall' number to be used inside the model. All behavioral, epidemiological, clinical, economic and NSP data used in the model is specific to the setting in which the model is applied. All of these data are entered in the template spreadsheet.

Country data inputs

We identified data custodians or appropriate M&E representatives for each country and invited them (approximately 40 people) to a regional workshop (in Chisanau, Moldova). A three day training meeting was conducted to specifically discuss data issues - including representativeness, reliability, validity, comparisons within and across settings etc. Then there was an extensive period of data collation, with frequent periodic teleconferences between data collators in-country and external epidemiologists and reviewers to discuss these issues and the interpretation of available data. This was followed by another regional workshop, 9 months later (in Minsk, Belarus), with the purpose of comparing data sources between countries, and rigorously assessing the quality of data collection, their reliability and how they should be interpreted for use in the analyses. These exercises revealed that surveillance mechanisms differed between settings and even within countries there were inconsistencies in some data collection procedures, sampling frameworks etc. Based on this, we obtained disaggregated data from individual studies within countries and attempted to examine subsets of study data that are consistent across studies so that trends could be assessed as reliably as possible. In general, epidemic data was obtained from HIV surveillance systems from each individual country, whereas demographic and behavioural data was obtained through Integrated Biological and Behavioural Surveillance or similar surveys.

Cost data were sourced directly from the principal recipients and sub-recipients for each country. Estonia, Tajikistan (Central Asia AIDS Control Project (CAAP), Central Asian Regional HIV/AIDS Programme (CARHAP) and Open Society Institute - Assistance Foundation, Tajikistan) and Kazakhstan reported other sources (non-GFATM) of cost data. Data collected included all needle-syringe programs funded by countries' government, community and international donors. We collated all direct costs associated with NSPs including direct medical costs of staff, specialist, cost of needle and syringes, operational costs of NSP clinics and monitoring and evaluation costs for the programs. All data was integrated to a central database supervised by in-country collaborators. The data was thoroughly checked and its reliability was validated through a data triangulation process.

Number of need	dles-syringes di	stributed				
	2005	2006	2007	2008	2009	2010
Armenia	69,264	59,690	73,630	78,235	78,268	140,000
Belarus	368,051	1,221,324	2,668,392	1,655,971	1,671,477	2,327,270
Estonia	865,452	1,616,235	2,005,951	2,420,304	2,277,509	2,925,545
Georgia	300,372	350,340	376,480	462,883	484,785	1,064,372

Table S2. Demographic and Intervention data collected from countries

Kazakhstan	14,400,000	17,055,463	17,069,000	21,081,762	27,277,384	21,015,446
Moldova	1,951,160	2,207,536	1,897,906	1,871,976	1,687,972	1,600,000
Tajikistan	679,417	1,936,213	1,573,604	1,961,966	1,902,763	2,207,173
Ukraine	3,500,000	6,945,251	6,864,699	9,398,456	14,363,378	18,084,503
Russia-Kursk	40,297	39,834	104,360	326,440	490,720	686,560
Russia-Lipetsk	81,637	194,431	151,580	199,170	291,068	286,020
Population of PV	NID*					
Armenia	9,000	9,450	9,950	10,500	11,000	12,700
Belarus	45,842	51,000	52,062	53,124	55,247	56,043
Estonia	15,000	15,000	15,000	15,000	15,000	15,000
Georgia	40,000	40,000	40,000	40,000	40,000	40,000
Kazakhstan	128,200	128,200	128,800	129,100	124,400	122,700
Moldova	25,000	25,000	25,000	25,000	25,000	25,000
Tajikistan	25,000	25,000	25,000	25,000	25,000	25,000
Ukraine	290,000	290,000	290,000	290,000	290,000	290,000
Russia-Kursk Russia-	4,026	4,430	4,872	5,359	5,895	6,484
Lipetsk	5,275	5,839	6,457	6,563	7,451	8,345
Percentage of P	WID accessing	g NSPs				
Armenia	5.00%	6.00%	7.00%	8.00%	9.00%	10.00%
Belarus	11.20%	15.20%	20.30%	24.80%	26.60%	30.60%
Estonia	73.00%	75.00%	77.00%	78.50%	80.00%	80.00%
Georgia	2.00%	5.00%	8.00%	10.00%	10.00%	10.00%
Kazakhstan	23.00%	29.00%	29.00%	35.00%	47.00%	62.00%
Moldova	21.40%	23.70%	25.50%	26.80%	39.70%	42.20%
Tajikistan	11.60%	18.20%	17.60%	19.20%	27.20%	33.40%
Ukraine	12.00%	19.30%	23.30%	32.60%	52.00%	58.60%
Russia-Kursk	15.60%	9.30%	12.20%	35.50%	50.20%	54.90%
Russia-Lipetsk						

* Demographic data were mostly taken from population size estimates that had been done in the region in 2009. Population sizes of PWID are always extremely difficult. There is no way to know how accurate they are in any setting. These estimates are crucial for determining the extent of the epidemic overall, coverage of interventions, and overall impact of their implementation – both epidemiologically and economically. Each country had official population size estimates. These official estimates, produced by different processes, generally had acceptable rationale behind them and were used for our analyses unless there were good reasons to believe that they were not reliable.

Table S3. Epidemiological data associated with PWID collected from countries. All prevalence levels and HIV testing coverage rates have uncertainties bounds provided by in-country collaborators. An implicit $\pm 25\%$ uncertainty level was assumed in the model when uncertainty was not provided.

Armenia

	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
					Н	V					
HIV prevalence						8.77% (7.92- 9.62%)		6.41% (5.85- 6.98%)			9.70% (4.80- 15.80%)
HIV diagnoses	18	19	22	12	33	46	24	32	35	44	38
AIDS diagnoses	3	4	1	12	20	41	46	59	83	84	94
On first- line ART	0	0	0	0	0	15	28	31	38	60	90
Tested in last 12 months						20.18%		23.58%			18.10%
Treatment- eligible			206	232	254	161	167	125	126	122	182
On second- line ART	0	0	0	0	0	0	0	2	4	5	7
					Н	ČV V					
HCV prevalence											36.4% (26.9- 45.5%)
Receive HCV treatment	0	0	0	0	0	0	0	0	0	0	0
Receive liver transplant	0	0	0	0	0	0	0	0	0	0	0

Belarus

	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
					H	V					
HIV prevalence					9.7% (9.1- 10.3%)		15.4% (14.6- 16.2%)		7.7% (6.9- 8.5%)	10.3% (9.5- 11.1%)	
HIV diagnoses	378	414	584	448	360	276	242	298	195	212	223
AIDS diagnoses						79	205	192	221	245	274
On first- line ART	0	0	0	0	0	77	310	396	517	655	612
Tested in last 12 months						45.9%	51.6%	59.2%		65.8%	
Treatment-											

eligible											
On second- line ART	0	0	0	0	0	0	0	0	0	0	0
					HC	CV					
HCV prevalence							39.0% (38.2- 39.8%)				
Receive HCV treatment	0	0	0	0	0	0	0	0	0	0	0
Receive liver transplant	0	0	0	0	0	0	0	0	0	0	0

Estonia

	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
					Н	IV					
HIV prevalence				45% (38- 51%)	55% (45- 66%)	54% (47- 60%)		54% (47- 61%)		48% (42- 53%)	
HIV diagnoses	354	1339	702	833	722	618	654	622	417	308	175
AIDS diagnoses	0	0	2	6	18	17	23	45	41	25	
On first- line ART											1,100
Tested in last 12 months						52%		43%		36%	
Treatment- eligible											
On second- line ART											
					H	CV					
HCV prevalence						80% (74- 84%)		95% (92- 97%)		95%	
Receive HCV treatment	0	0	0	0	0	0	0	0	0	0	0
Receive liver transplant	0	0	0	0	0	0	0	0	0	0	0

Georgia

	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
HIV											
HIV	1.1%		1.1%		1.5%		1.8%			2.1%	
prevalence					(0.4-		(0-			(0-	

*					2.1%)		3.6%)			4.5%	
HIV diagnoses	79	93	95	100	163	242	276	344	351	385	455
AIDS diagnoses	49	40	43	64	105	147	158	201	203	193	148
On first- line ART	96	106	118	131	146	162	180	200	222	294	363
Tested in last 12 months	5%		5%		5%		5%			5%	
Treatment- eligible											
On second- line ART	17	19	21	24	26	29	32	36	40	43	65
					НС	V					
HCV prevalence	70%		70%				64.6%	56.8%	50%	50%	50%
Receive HCV treatment	250	255	260	265	270	275	280	285	290	320	320
Receive liver transplant	0	0	0	0	0	0	0	0	0	0	0

* It is believed that these prevalence estimates under-estimate the true prevalence level among PWID in Georgia

Kazakhstan

	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
					ŀ	IIV					
HIV				3.9%	2.8%	2.9%	3.4%	3.9%	4.2%	2.9%	2.8%
prevalence				(2.7-	(2.2-	(2.4-	(2.9-	(3.4-	(3.6-	(2.4-	(2.3-
				5.1%)	3.4%)	3.4%)	3.9%)	4.4%)	4.8%)	3.4%)	3.3%)
HIV	295	1032	515	501	433	632	1159	1258	1410	1150	1043
diagnoses											
AIDS											
diagnoses											
On first-							195	246	307	498	639
line ART							(174-	(222-	(284-	(470-	(623-
							216)	270)	330)	526)	655)
Tested in							56%	49%	57%	61%	65%
last 12											
months											
Treatment-							386	562	538	863	713
eligible							(347-	(516-	(495-	(811-	(664-
							425)	608)	581)	915)	762)
On							10 (4-	13 (6-	16 (8-	26 (16-	34 (23-
second-							16)	20)	24)	36)	45)
line ART											
		1			1	CV					
HCV				56.7%	57.8%	63.1%	64.5%	65.7%	64.1%	60.3%	59.0%
prevalence				(53.7-	(56.0-	(61.7-	(63.1-	(64.4-	(62.8-	(58.9-	(57.6-
				59.7%)	59.6%)	64.5%)	65.9%)	67.7%)	65.5%)	61.7%)	60.4%)
Receive	0	0	0	0	0	0	0	0	0	0	0

HCV treatment											
Receive liver	0	0	0	0	0	0	0	0	0	0	0
transplant											

Moldova

	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
					HI	V					
HIV prevalence		29%			25.3% (21.0- 29.6%)			20.0% (15.4- 24.6%)		17.8%	
HIV diagnoses	174	232	199	253	357	533	618	731	790	704	704
AIDS diagnoses	5	7	18	43	53	62	85	189	82	277	92
On first- line ART				17	72	107	154	229	299	367	389
Tested in last 12 months		40%			42- 52%			33- 58%		41- 49%	
Treatment- eligible	744	921	1085	1232	1172	963	979	1750	1583	1577	
On second- line ART								3	4	13	
					HC	V					
HCV prevalence								43.4% (37.7- 49.1%)		63%	
Receive HCV treatment	0	0	0	0	0	0	0	0	0	0	0
Receive liver transplant	0	0	0	0	0	0	0	0	0	0	0

Tajikistan

	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
						HIV					
HIV prevalence						16.6% (13.3- 20.4%)	22.6% (18.9- 26.7%)	19.8% (17.6- 22.1%)	17.6% (15.5- 19.9%)	17.7% (15.8- 19.7%)	
HIV diagnoses	6	19	22	36	144	130	97	152	180	220	595
AIDS diagnoses	0	0	0	0	1	0	0	6	21	53	44
On first- line ART	0	0	0	0	0	0	41	30	102	167	272
Tested in last 12	0%	0%	0%			21.3- 37.6%	22.6- 29.2%	28.7- 36.2%	29.3- 39.7%	27.7- 42.2%	

months											
Treatment- eligible											
On second- line ART											
					ŀ	ICV					
HCV prevalence						46.9% (42.2- 51.6%	44.3% (39.8- 49.0%)	30.8% (28.3- 33.5%)	30.4% (27.8- 33.1%)	32.9% (30.5- 35.4%)	
Receive HCV treatment	0	0	0	0	0	0	0	0	0	0	22
Receive liver transplant	0	0	0	0	0	0	0	0	0	0	0

Ukraine

	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
						IIV					
HIV prevalence	32.0% (29.3- 34.7%)				29.1% (26.7- 31.5%)	30.0% (28.2- 31.8%)	42.9% (40.8- 45.0%)	30.6% (28.7- 32.5%)	29.1% (27.4- 30.8%)	20.5% (19.1- 21.9%)	20.5% (19.1- 21.9%)
HIV diagnoses	3881	3984	4587	4815	5778	6270	7127	7084	7009	7015	
AIDS diagnoses	405	491	711	927	1271	1920	2095	1835	1623	1592	
On first- line ART	0	0	0	0	0	0	0	0	0	1194	1732
Tested in last 12 months					30%		23%	31,2%	30.5%	27.6%	27.6%
Treatment- eligible										902	834
On second- line ART	0	0	0	0	0	0	0	0	0	0	0
					Н	CV			•	•	
HCV prevalence							50.7%				
Receive HCV treatment	0	0	0	0	0	0	0	0	252	256	
Receive liver transplant	0	0	0	0	0	0	0	0	0	0	0

Russia-Kursk

	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	
HIV												

							1				
HIV .	0.00/	1 10/	1 50/	1 50/	1	1 00/	2.00/	2.00/	2.00/	2.00/	2.10/
prevalence	0.8%	1.1%	1.5%	1.5%	1.6%	1.8%	2.0%	2.0%	2.0%	2.0%	2.1%
HIV											
diagnoses	10	10	13	7	10	12	11	11	13	11	17
AIDS											
diagnoses	0	0	0	2	4	5	7	4	4	7	11
On first-											
line ART					1	1	1	2	8	1	4
Tested in											
last 12											
months	9.4%	23.1%	10.5%	13.2%	18.8%	36.5%	33.2%	18.9%	18.5%	20.8%	15.6%
Treatment-											
eligible			1		2	1	5	4	12	8	15
On											
second-											
line ART					1	1	1	2	8	1	4
HCV											
prevalence							53.0%	50.0%	47.0%	48.0%	57.5%
Receive											
HCV											
treatment										5	23
Receive											
liver											
transplant											

Russia-Lipetsk

	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
	•	•	•	•	ŀ	IIV				•	
HIV											
prevalence						2.0%	3.5%	3.5%	3.5%	3.5%	3.5%
HIV diagnoses	9	13	4	6	7	8	28	20	11	8	
AIDS diagnoses											
On first- line ART											
Tested in last 12 months											
Treatment- eligible											
On second- line ART											
HCV prevalence						77.4%	80.1%	80.4%	78.3%	84.0%	78.2%
Receive HCV treatment											
Receive											

liver						
transplant						

Table S4. Behavioral data associated with PWID collected from countries. All behavioural indicators have uncertainties bounds provided by in-country collaborators. An implicit $\pm 25\%$ uncertainty level was assumed for these indicators in the model when uncertainty was not provided.

	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
					Ar	menia		<u> </u>			<u> </u>
Average frequency of monthly injecting*			18			15		12			12
% shared syringe last month			44% (33- 55%)			31.1% (23.3- 38.9%)		33.3% (25.0- 41.6%)			36.1% (27.1- 45.1%)
% injections shared for sharing PWID											
% shared syringes cleaned						43.6% (32.7- 54.5%)		37.8% (28.4- 47.3%)			63.8% (47.9- 79.8%)
	•				Be	larus		1		-	- 1
Average frequency of monthly injecting*							14			13	
% shared syringe last month						19.6%	10.8%	7.6%		6%	
% injections shared for sharing PWID											
% shared syringes cleaned											
Average	1				Es	stonia		40	1	20	
Average frequency of monthly injecting*						39		49		39	
% shared syringe last month						27% (22- 33%)		24% (20-30%		24% (19- 30%)	

	1	1			1		1	1	1		1
%						1.5%		1.3%		2% (1.7-	
injections						(1.4-		(1.2-		2.2%)	
shared for						1.7%)		1.5%)			
sharing						/0/					
PWID											
% shared											
syringes											
cleaned											
	•	•	•	•	Geo	orgia	•	•			
Average											
frequency											
of monthly											
injecting*											
% shared	38.1%		38.1%		39.1%		30.0%		25.0%	25.0%	15.0%
syringe											
last month											
%											
injections											
shared for											
sharing											
PWID											
% shared	10.0%		10.0%		10.0%		10.0%				
syringes	10.070		101070		101070		101070				
cleaned											
			l			1					
A					Kazar	chstan	44 (00		05 (00	00 (00	00 (07
Average						40 (38-	41 (39-	36 (34-	35 (33-	30 (28-	29 (27-
frequency						42)	43)	38)	37)	32)	30)
of monthly											
injecting*					4 4 40/ /	474	45.00/	4.4.00/	40 70/	44 70/	0.00/
% shared					14.4% (17.1	15.6%	14.0%	16.7%	11.7%	9.3%
syringe					19.5-	(18.2-	(14.5-	(13.0-	(15.6-	(10.8-	(8.5-
last month					25.0%)	19.4%)	16.6%)	15.1%)	17.9%)	12.8%)	10.3%)
%						43.7%	45.5%	35.6%	31.7%	32.2%	43.2%
injections						(40.4-	(41.8-	(31.8-	(28.3-	(28.1-	(38.2-
shared for						47.0%)	49.2%)	39.3%)	35.2%)	36.4%)	48.1%)
sharing						,	,	,	,	,	,
PWID											
% shared						83.1%	75.0%	71.0%	65.0%	78.8%	74.7% (
syringes						(82.5-	(74.3-	(70.1-	(64.0-	(77.8-	73.6-
cleaned						83.7%)	, 75.7%)	, 71.9%)	68.0%)	, 79.8%)	75.8%)
						,	,	,	,	,	,
					Mole	dova					
Average		24 (19-			38 (30-			15 (12-		12 (10-	
frequency		29)			45)			18)		14)	
of monthly					10,			,		,	
injecting*											
% shared										1	
syringe											
last month											
μασι πισπιπ					1					1	

A (1		1	45.00/			0.00/		4 = 0 (- I
%					15.3%			3.6%		1.5%	
injections					(12.3-			(2.9-		(1.2-	
shared for					18.4%)			4.3%)		1.8%)	
sharing					,			,		,	
PWID											
% shared		2.2%			13.3%						
syringes		(1.8-			(10.6-						
cleaned		2.6%)			16.0%)						
		2.0 /0)			10.0 %)						
				<u> </u>	Tajik	istan					
•	[T	1	Г					40		
Average						21	29	24	19	22	
frequency											
of monthly											
injecting*											-
% shared						37.7%	13.2%	17.7%	18.9%	19.1%	
syringe						(33.2-	(10.4-	(15.7-	(16.8-	(17.2-	
last month						42.4%)	16.7%)	20.0%)	21.3%)	21.3%)	
						12. 170)		_0.070)			
%				1	1	1	1				+
injections											
shared for											
sharing PWID											
% shared						22.6%	24.3%	12.5%	8.1%	17.4%	
syringes						(18.9-	(21.5-	(10.8-	(6.7-	(15.5-	
cleaned						26.9%)	33.6%)	14.6%)	9.9%)	19.4%)	
					Ukr	aine					
Average							24	26	25	21	21
frequency											
of monthly											
injecting*											
% shared			34.4%		26.9%		16.0%	22.7%	15.1%	9.9%	9.9%
syringe			•		_0.070					0.070	01070
last month											
%											+
⁷⁰ injections											
shared for											
sharing											
PWID											+
% shared											
syringes											
cleaned											
					Russia	a-Kursk					
Average											
frequency											
or monthly				1	1	1	1	1	1	1	1
of monthly injecting*		15		11	13	21	18	36	43	66	52
injecting*		15		11	13	21	18	36	43	66	52
		15 72.0%		11 62.3%	13 48.4%	21 39.3%	18 8.4%	36 11.5%	43 6.1%	66 3.2%	52 8.0%

last month				1		1	I	Γ	Γ	I	
%											
injections											
shared for											
sharing											
PWID		85.7%		85.7%	87.1%	89.3%	78.3%	92.3%	89.8%	90.3%	78.0%
% shared											
syringes											
cleaned		36.8%		35.7%	32.3%		1.2%	9.6%	5.1%	3.2%	8.0%
					Russia-	Lipetsk					
Average											
frequency											
of monthly											
injecting*							39	50	55	62	77
% shared											
syringe											
last month							30%	35%	13%	2%	8%
%											
injections											
shared for											
sharing											
-											
PWID											
% shared											
syringes											
cleaned											
	vorogo	over dist	ribution	l of optomo	rice of ini	ooting fro	<u>l</u> guanaica:	diatributi		L onfidorac	limito
*: Weighted a		over uisti		Ji calego	mes or inj	ecting ne	quencies;	uistributi	ons and c	onnuence	; infins
not shown he	ere										

Investments in NSPs

There were limited costing data on HIV prevention and treatment programs among PWID. Previous cost studies and program reports suggest that the average unit costs of providing NSP services to PWID range from \$0.11 in China [4] to \$0.36 in Belarus [5] and \$0.43 in Ukraine [6]. Studies on the costs of ART in countries of EECA present varying costs across the different countries. A World Bank study in 2007 reported annual costs of \$200 to \$3,600 per person, with an unweighted average of \$1,600 per person, and other healthcare related costs amounting to an average of \$570 per person [7].

The average cost of reaching one PWID through NSPs across all the eight countries rose from \$47.4 in 2005 to \$62.3 in 2010; Belarus and Moldova were the only countries to have decreasing trends over time.

	2005	2006	2007	2008	2009	2010
Armenia	30,303	30,303	30,303	30,303	42,152	54,000
Belarus	225,878	584,847	618,126	605,502	623,412	814,950
Estonia	774,321	902,500	1,229,712	1,361,390	1,276,258	1,276,957
Georgia	60,241	106,515	114,887	193,391	270,000	446,000
Kazakhstan	1,669,241	2,301,766	2,406,926	2,589,761	3,172,652	4,128,319
Moldova	262,033	330,054	234,074	273,440	267,278	251,690
Tajikistan	74,736	269,483	359,449	588,803	608,462	931,223
Ukraine	152,523	1,673,978	1,296,453	1,480,685	4,148,721	4,290,378
Russia-Kursk	5,447	24,002	27,362	52,923	48,061	41,246
Russia-Lipetsk	22,640	43,348	52,083	59,469	55,832	61,209

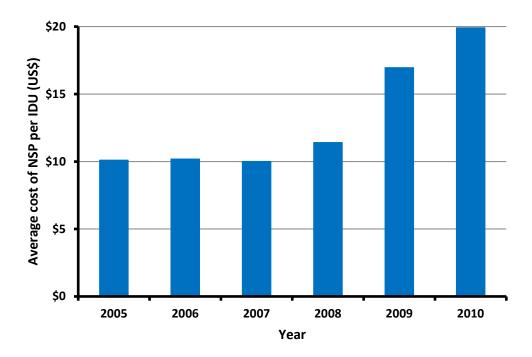

Table S5. Total investments in NSP per country (in US\$)

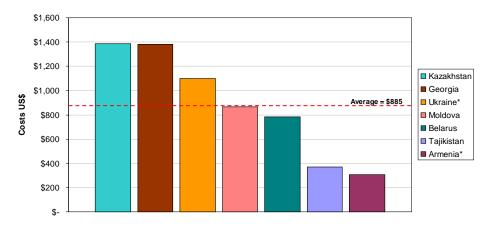
Table S6. Cost per PWID covered per country per year (in US\$)

	2005	2006	2007	2008	2009	2010
Armenia	3.4	3.2	3.0	2.9	3.8	4.8
Belarus	4.9	11.5	11.9	11.4	11.3	14.5

Estonia	43.6	45.6	55.7	64.4	61.3	61.2
Georgia	1.5	2.7	2.9	4.8	6.8	11.2
Kazakhstan	13.0	18.0	18.7	20.1	25.5	33.6
Moldova	10.5	13.2	9.4	10.9	10.7	10.1
Tajikistan	3.0	10.8	14.4	23.6	24.3	37.2
Ukraine		5.8	4.5	5.1	14.3	14.8
Russia-Kursk	1.4	5.4	5.6	9.9	8.2	6.4
Russia-Lipetsk	4.3	7.4	8.1	9.1	7.5	7.3

Figure S2. Average cost of NSPs per PWID across nine countries

Costs of ART


The dominant health costs for PWID living with HIV are associated with ART. There has been a steep decline in the price of first- and second-line regimens of ART in most (but not all) low- to middle-income countries between 2008 and 2010, by as much as 80% in some cases [8]. As most of the countries in this region are of these income classifications, we deduced that the costs of these drugs have also decreased. If applicable, other cost data on ART were derived from the ministries of health or the national AIDS centers in the countries. Interpolation and extrapolation were used for some missing data.

The cost of ART ranged from \$308 in Armenia to \$4,588 in Estonia. Excluding Estonia, the cost of ART in the other seven countries was relatively consistent, at an average of \$885 per person per year. Estonia reported unit costs for ART of \$4,588 per person year, but the GDP per capita (\$14,403) is the highest among the countries analyzed. Estonia is not a recipient of the GFATM grants for harm reduction and has to purchase ARVs at the prevailing market price of the rest of Europe. Estonia also does not buy antiretroviral drugs in large quantities compared with counterpart countries in the region. The cost breakdown shows that the cost of first and second line ARV drugs contributed the most to the overall cost of ART in each country, followed by hospital costs and the cost of laboratory tests and viral load. The distribution of costs (excluding Estonia) is shown in Figure 1.

These regional costs are higher than those reported for low and middle-income countries. UNAIDS has published differential costs for low-income and middle-income countries. There are three major components for the costs of antiretroviral therapy; drugs, laboratory and service delivery. The cost of both 1st and 2nd line drugs for middle-income countries is reported in \$155 for first line regimens and US\$ 1,687 for second line regimens. Laboratory costs have been calculated as the annual median cost for laboratory tests across countries as obtained from recent literature. The median cost in 2010 is estimated at \$180 (USD) per patient. Studies of service delivery costs found a range from \$79 per patient per year to \$345. The average cost (weighted across low income, lower middle, and upper middle-income countries) of about \$180 per patient per year in 2010. Thus, the annual cost for antiretroviral treatment used in the UNAIDS investment framework amounts to (155+180+180) US\$ 550 per person per year [9].

In some countries it is possible to determine the number of people who initiated ART after acquiring HIV infection through injecting drug use. However, most of the time assumptions need to be made on the proportion of all people initiating ART who are, or were, PWID. ART is often more likely withheld from PWID compared to other population groups due to fears of non-adherence and development of resistance; however, evidence has shown that the risk of development of antiretroviral resistance does not differ significantly between PWID and non-PWID, nor are there differences in rates of loss to follow-up and treatment failure [10]. Similarly, there is no evidence of increased sexual risk behavior after initiating ART among PWID [11].

Figure S3. ART costs per injecting drug user on treatment by country

Costs of ART for IDUs by country

Non-ART healthcare costs

Table S7: Average non-ART healthcare costs per person per year

Healthcare costs for HIV	Armenia	Belarus	Estonia	Georgia	Kazkhstan	Moldova	Tajikistan	Ukraine	Russia- Kursk	Russia- Lipetsk
PLHIV who have CD4 count >500 cells per µl	53	285	422		283	38	78	218	388	570
PLHIV who have CD4 count 350-500 cells per µl	53	285	422		186	43	118	218	651	818
PLHIV who have CD4 count 200-350 cells per µl	53	356	511		283	204	197	218	1,458	1,349
PLHIV who have CD4 count <200 cells per µl	53	487	687		283	213	197	218	2,923	1,478
Average annual other non-ART healthcare costs (for people on ART)	53	503	1108	1000	283	464	164	218	1,470	1,445
Healthcare costs for HCV				*			**	*		
Acute hepatitis C						17996				
Pre-cirrhosis stage of chronic hepatitis C (fibrosis stage 0 to 3) – 1^{st} year Pre-cirrhosis stage of chronic hepatitis C (fibrosis stage 0 to 3) – successive years	548					406				
Compensated cirrhosis (fibrosis stage 4) Acute hepatitis C treatment Treatment of chronic HCV patients with pegylated interferon and ribavirin (24 weeks) Treatment of chronic HCV patients with pegylated interferon and ribavirin (48 weeks)	2740					811				
Hepatocellular carcinoma Liver transplant (1st year) Liver transplant (subsequent years)	724									
Decompensated cirrhosis (liver failure)	14860									

* \$23,560 and \$21,076 spent on HCV-related healthcare costs per year in Georgia and Ukraine respectively across entire HCVinfected populations

** Average annual cost per person per year of \$2380 in Tajikistan

Health state utilities

Table S8: Health state utilities

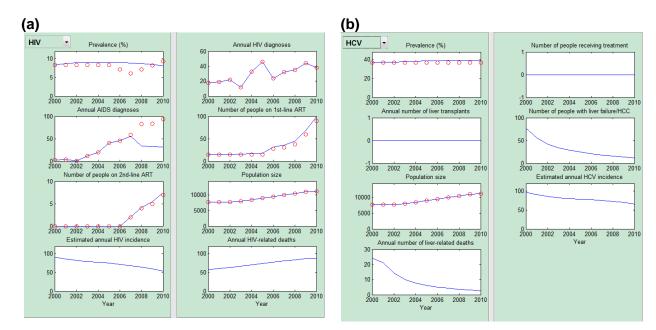
HIV	Low estimates	Upper estimates	Reference
Health Utility of uninfected PWID	0.93	0.96	[12]
Health Utility of PLHIV with CD4 > 500	0.84	0.95	[13, 14]
Health Utility of PLHIV with CD4 is 350-500	0.84	0.93	[13, 14]
Health Utility of PLHIV with CD4 is 200-350	0.72	0.93	[13, 14]
Health Utility of PLHIV with CD4 < 200	0.60	0.85	[13, 14]
Health Utility of PLHIV on ART	0.70	0.90	[14-17]
	Low	Upper estimates	Reference
HCV	estimates		
	estimates		
Health Utility of PLHCV at acute stage	0.64	0.89	[18]
		0.89 0.89	[18] [19-21]
Health Utility of PLHCV at acute stage	0.64		
Health Utility of PLHCV at acute stage Health Utility of PLHCV at F0 to F3 stage	0.64 0.64	0.89	[19-21]
Health Utility of PLHCV at acute stage Health Utility of PLHCV at F0 to F3 stage Health Utility of PLHCV at F4 stage	0.64 0.64 0.62	0.89 0.88	[19-21] [19-21]

Model biological parameters

Table S9: HIV-related parameters

Symbol	Description	Values	References
Population π	Average rate of people entering PWID population	Determined dynamically based on the exit rate (ζ) and mortality rates (μ) to ensure the total population size matches to the data in each	
Transmission		country	
$\beta_{\rm HIV}$	Transmission probability of HIV per injection with a contaminated syringe	0.6-0.8%	[22, 23]
Disease progression	of undiagnosed individuals without treatment		
$1/\tau_{CD4>500}$	Average time for undiagnosed (without ART) HIV-infected individuals to progress from CD4 count >500 to CD4 count 350-500	4.09 (3.79-4.42) years	[24]
$1/\tau_{_{350$	Average time for undiagnosed (without ART) HIV-infected individuals to progress from CD4 count 350-500 to CD4 count 200-350	1.96 (1.81-2.13) years	
$1/\tau_{200 < CD4 < 350}$	Average time for undiagnosed (without ART) HIV-infected individuals to progress from CD4 count 200-350 to CD4 count <200	1.96 (1.81-2.13) years	
Disease progression	of HIV-infected individuals on treatment (detectable viral load)		
$1/\omega_{CD4>500}^{D}$	Average time for HIV infected individuals on ART with detectable viral load to progress from CD4 count >500 to CD4 count 350-500	10.99 (1.32-12.00) years	[25]
$1/\omega^{D}_{350 < CD4 < 500}$	Average time for HIV infected individuals on ART with detectable viral load to progress from CD4 count 350-500 to CD4 count 200-350	6.38 (0.48-8.00) years	
$1/\omega^{D}_{200 < CD4 < 350}$	Average time for HIV infected individuals on ART with detectable viral load to progress from CD4 count 200-350 to CD4 count <200	8.88 (0.51-10.00) years	
Disease progression	on treatment (undetectable viral load)		
$1/\omega_{CD4<200}^{U}$	Average time for HIV infected individuals on ART with undetectable viral load to progress from CD4 count <200 to CD4 count 200-350	2.80 (2.33-3.58) years	[26]
$1/\omega_{200 < CD4 < 350}^{U}$	Average time for HIV infected individuals on ART with undetectable viral load to progress from CD4 count 200-350 to CD4 count 350-500	1.42 (0.90-3.42) years	
$1/\omega^{U}_{350 < CD4 < 500}$	Average time for HIV infected individuals on ART with undetectable viral load to progress from CD4 count 350-500 to CD4 count >500	2.20 (1.07-7.28) years	
Commencement of t	reatment		
$\eta^{\scriptscriptstyle D/U}_{\scriptscriptstyle CD4>500}$	Proportion of individuals with CD4 count >500 that commence treatment for HIV each year	0.05	Experimental variable
$\eta^{^{D/U}}_{_{350< CD4< 500}}$	Proportion of individuals with CD4 count 350-500 that commence treatment for HIV each year	0.2	
$\eta^{{}_{200$	Proportion of individuals with CD4 count 200-350 that commence treatment for HIV each year	0.75-0.85	
$\eta^{\scriptscriptstyle D/U}_{\scriptscriptstyle CD4<200}$	Proportion of individuals with CD4 count <200 that commence treatment for HIV each year	0.85-0.95	
	detectable viral load)		
$\phi_{\scriptscriptstyle S}$	Percentage of individuals on ART who cease therapy each year	1-5%	Expert opinion
	ent (undetectable viral load)	0.00/	[07]
ϕ	Percentage of individuals on ART to experience viral rebound per year	3-6%	[27]
Response to treatme	nt (detectable viral load)		·
$1/\sigma_{200 < CD4 < 350}$	Average time after treatment failure for individuals with CD4 count > 200 to go on second line ART	6-18 months	Experimental variable
$1/\sigma_{_{CD4<200}}$	Average time for individuals on ART with CD4 count <200 to go on second-line ART	2-3 months	
$\frac{\text{Mortality Rates (Dete}}{\mu_{CD4>500}^{D}}$	ectable Viral Load) HIV-related death rate for patients with CD4 count >500 cells per μL and detectable viral load	0.051% (0.035-0.068%)	[28]
· CD4>300	HIV-related death rate for patients with CD4 count 350-500 cells per μ L	0.128% (0.092-0.164%)	[28]

$\mu^{D}_{200 < CD4 < 350}$	HIV-related death rate per 100 person-years for patients with CD4 count 200-350 cells per μL and detectable viral load	1.0% (0.2-2.0)%	[25, 28]		
$\mu^{\scriptscriptstyle D}_{\scriptscriptstyle CD4<200}$	HIV-related death rate per 100 person-years for patients with CD4 count <200 cells per μL and detectable viral load	4.08 (0.30-7.86)%			
Mortality Rates (Und	etectable Viral Load)	•			
$\mu^{\scriptscriptstyle U}_{\scriptscriptstyle CD4<200}$	HIV-related death rate for patients with CD4 count <200 cells per μL and undetectable viral load	Same as $\mu^{\scriptscriptstyle D}_{\scriptscriptstyle CD4<200}$	Experimental variable		
$\mu^{U}_{200 < CD4 < 350}$	HIV-related death rate for patients with CD4 count 200-350 cells per μL and undetectable viral load	Same as $\mu^D_{200 < CD4 < 350}$			
$\mu^{U}_{350 < CD4 < 500}$	HIV-related death rate for patients with CD4 count 350-500 cells per μL and undetectable viral load	Same as $\mu^D_{350 < CD4 < 500}$			
$\mu^{\scriptscriptstyle U}_{\scriptscriptstyle CD4>500}$	HIV-related death rate for patients with CD4 count >500 cells per μL and undetectable viral load	$_{Same as} \mu^{\scriptscriptstyle D}_{\scriptscriptstyle CD4>500}$			
Average duration of drug use					
ζ	Average duration of drug-use among injecting drug users in Eastern Europe and Central Asian countries. Cessation rate is approximated by 1/ ζ	10-20 years	[29, 30]		


Table S10: HCV-related parameters

Symbol Transmission	Description		Values	References	
$\beta_{\rm HCV}$		patitis C per injection with a	1.5-4%	[31-38]	
	contaminated syringe				
Disease progression wi		fected individuals to program from	4-8 months	[20, 40]	
$1/ au_A$	acute infection to the first stage of	nfected individuals to progress from fibrosis (F0)	4-8 months	[39, 40]	
$1/ au_{F0-F1}$	Average time from fibrosis stage For probability]	D to F1 [Annual transition	8.62 (0.23-16.95) years [0.116 (0.059-0.228)]	[41, 42]	
$1/\tau_{_{F1-F2}}$	Average time from fibrosis stage F [Annual transition probability]	1 to F2	11.76 (9.09-15.38) years [0.085 (0.065-0.110)]	[41, 42]	
$1/\tau_{\scriptscriptstyle F2-F3}$			11.76 (6.80-20.41) years [0.085 (0.049-0.147)]		
	[Annual transition probability]	osis stage F2 to F3		[41, 42]	
$1/ au_{F3-F4}$	Average time from fibr [Annual transition probability]	osis stage F3 to F4	7.69 (3.13-18.87) years [0.130 (0.053-0.319)]	[41, 42]	
$1/ au_{F4-LF}$	Average time from [Annual transition probability]	F4 to liver failure	18.18 (10.87-25.0) years [0.055 (0.040-0.092)]	[43-59]	
$1/\tau_{F4-HCC}$	Average time from F4 to hepatoce [Annual transition probability]	llular carcinoma	32.26 (26.32-41.67) years [0.031 (0.024-0.038)]		
$1/ au_{\tiny LF-HCC}$	Average time from liver fail [Annual transition probability]	ure to hepatocellular carcinoma	14.71 (10.10-24.39) years [0.068 (0.041-0.099)]	[59, 60]	
$1/ au_{LF-LT}$	Average time from liver fail [Annual transition probability		30.30 (20.41-58.82) years [0.033 (0.017-0.049)]	[61]	
$1/ au_{HCC-LT}$	Average time until liver transplan carcinoma [Annual transition prob	t for individuals with hepatocellular ability]	10.0 (5.56-20.0) years [0.1 (0.05-0.18)]	[62]	
$1/\mu_{\scriptscriptstyle LF-LD}$	Average time until liver-related de [Annual transition probability]	eath for individuals with liver failure	7.25 (4.95-13.51) years [0.138 (0.074–0.202)]	[48]	
$1/\mu_{LT-LD}$	Average time until liver-related death for individuals who have	First year	5.92 (4.76-7.87) years [0.169 (0.127-0.210)]	[63, 64]	
	received a liver transplant [Annual transition probability]	After first year	29.41 (23.26-41.67) years [0.034 (0.024-0.043)]		
$1/\mu_{\scriptscriptstyle HCC-LD}$	Average time until liver-relat hepatocellular carcinoma [Annua		1.65 (1.48-1.83) years [0.605 (0.545-0.676)]	[52]	
Commencement of trea			-		
	Proportion treated for Acute/Early	HCV infection	0.002-0.003	[62, 65]	
1	Average time before individuals	Asymptomatic	320 (213-399) days	Expert opinion	
$\frac{1}{\eta_A}$	in Acute/Early HCV infection commence treatment	Symptomatic	221 (188-274) days		
• A	Proportion of individuals of	F0/1	25-30%	[66]	
$\eta_{_F}$	fibrosis HCV infection to	F2/3	46-60%		
	commence treatment per year	F4	15-25%		
Stopping treatment	Average duration of treatment	Acute	0.46 years	[67]	
1	Average duration of treatment		-	[67]	
$\frac{1}{\nu}$		F0-F4	0.69 years	[68, 69]	
Clearance of virus		·			
Ψ	Proportion of PWID who spontaneously clear HCV	Acute	0.26 (0.22-0.29)	[70]	
γ_A	Proportion of HCV-treated individua treatment (sustained virological res		0.6-0.9	[71-75]	
γ_{F0}	Proportion of HCV-treated individua treatment in F0 phase	als who clear the virus due to	0.60 (0.52-0.68)	[69, 76, 77]	
γ_F	Proportion of HCV-treated individua treatment in F1-F4 phase	als who clear the virus due to	0.56 (0.50-0.61)	[69, 76, 77]	

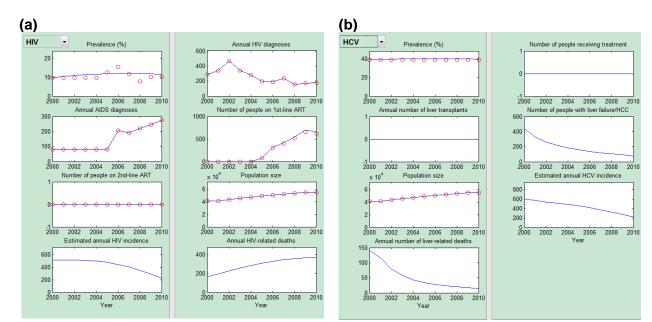
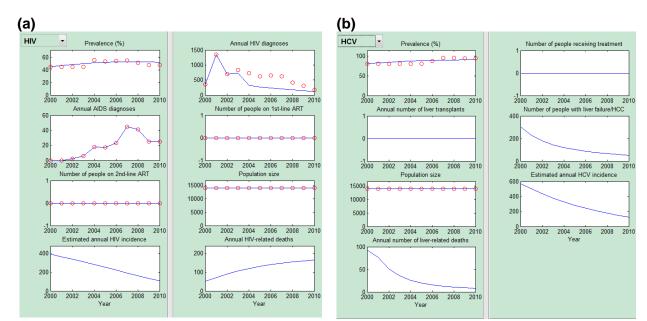
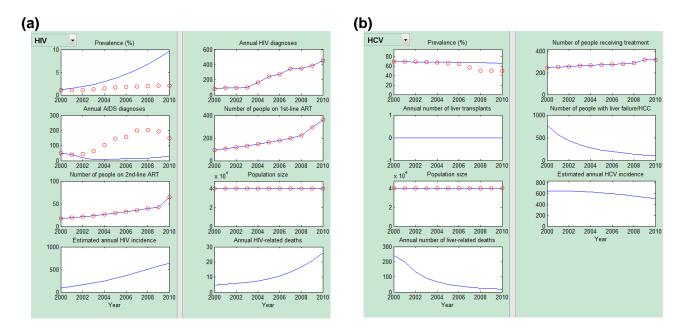
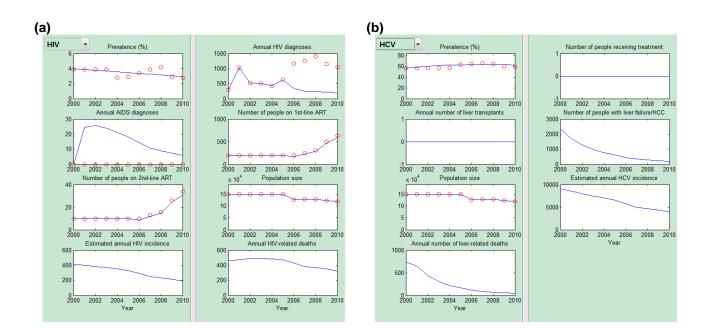
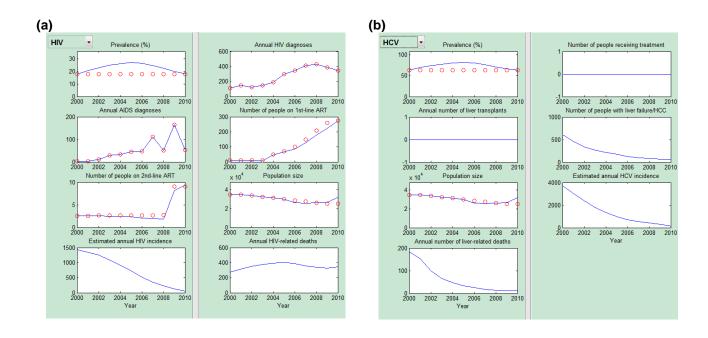

Calibration: model outcomes versus available data

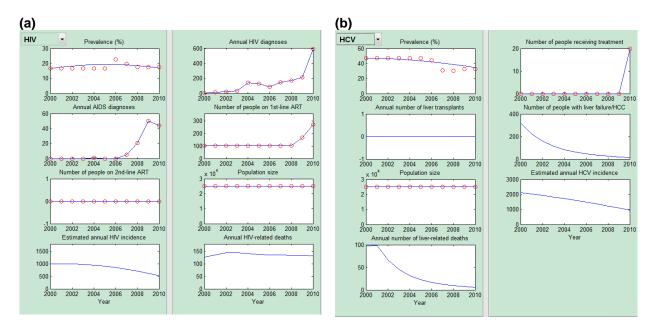
Figure S4: Calibrated (a) HIV- and (b) HCV-related model trajectories (blue curves) compared with interpolated available data (red open circles) for each country.

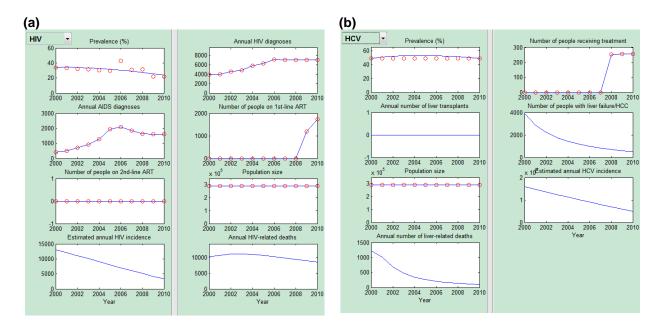

Armenia

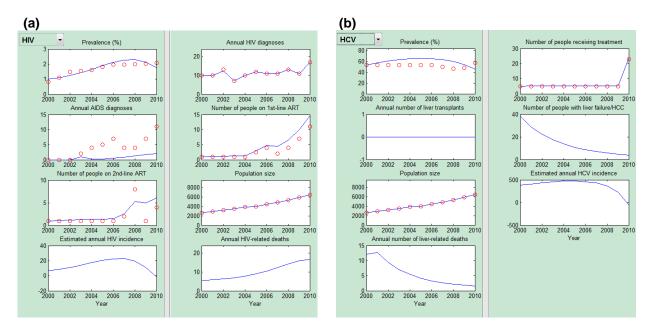

Belarus

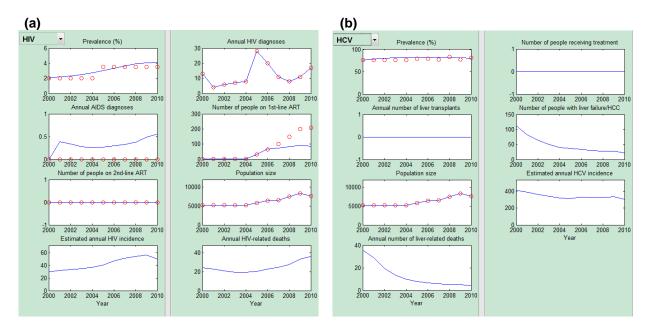

Estonia


Georgia

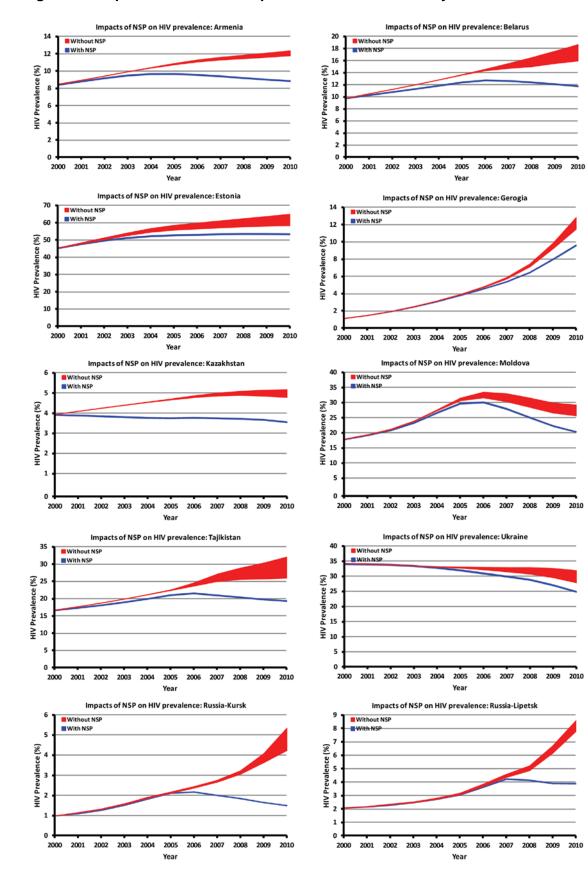

Kazakhstan


Moldova


Tajikistan


Ukraine

Russia-Kursk



Russia-Lipetsk

Model epidemic projections based on pre-NSP conditions

Prevention programs aim to reduce incidence of new infections. However, direct measures of incidence are not available in any of the case study countries; trends in prevalence are the only biological marker available. If rates of removal from the population (death, injecting cessation, migration) remain constant and incidence decreases then prevalence should also decrease. However, over the same timeframe that NSPs were scaled-up there were also increases in some other treatment and prevention programs. It should be noted that most other programs did not have large coverage among people who inject drugs. We aimed to determine what level of prevalence would be expected in the absence of NSPs (with pre-NSP syringe sharing behaviors) and ascertain whether observed prevalence levels among PWID were plausible without NSPs. The width of uncertainty bounds was dictated by the choice to use latin hypercube sampling over all parameter values and range of trajectories under different scenarios overlapped with observed data; however, when we considered only parameter sets which yielded trajectories that had 'reasonable' fits to the observed data then scenarios simulated without NSPs (but with other programs) deviated from the observed data.

Figure S5. Impacts of NSP on HIV prevalence in each country

References

- 1. Anderson RM, May RM. *Infectious Diseases of Humans*. Oxford: Oxford University Press; 1991.
- 2. Coleman T, Li Y. An Interior Trust Region Approach for Nonlinear Minimization Subject to Bounds. *SIAM Journal on Optimization* 1996,**6**:418-445.
- 3. Marquardt D. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. *Journal of the Society for Industrial and Applied Mathematics* 1963,**11**:431-441.
- 4. Zhang L, Yap L, Xun Z, Wu Z, Wilson D. Needle and syringe programs in Yunnan, China yield health and financial return. *BMC Public Health* 2011,**11**:250.
- 5. Kumaranayake L, Vickerman P, Walker D, Samoshkin S, Romantzov V, Emelyanova Z, *et al.* The cost-effectiveness of HIV preventive measures among injecting drug users in Svetlogorsk, Belarus. *Addiction* 2004,**99**:1565-1576.
- 6. Vickerman P. The cost-effectiveness of expanding harm reduction activities for injecting drug users in Odessa, Ukraine. *Sex Transm Dis* 2006,**33**:S89 102.
- 7. Adeyi O. Averting AIDS crises in Eastern Europe and Central Asia. In. Washington DC: The World Bank; 2003.
- Transaction prices for Antiretroviral Medicines and HIV Diagnostics from 2008 to October 2010. Global Price Reporting Mechanism 2010, Available at: http://www.who.int/hiv/pub/amds/gprm_summary_report_dec2010.pdf; Accessed 26th October, 2011.
- 9. Schwartländer B, Stover J, Hallett T, Atun R, Avila C, Gouws E, *et al.* Towards an improved investment approach for an effective response to HIV/AIDS. *The Lancet* 2011,**377**:2031-2041.
- 10. Werb D, Mills EJ, Montaner JS, Wood E. Risk of resistance to highly active antiretroviral therapy among HIV-positive injecting drug users: a meta-analysis. *Lancet Infect Dis* 2010,**10**:464-469.
- 11. Marshall BDL, Milloy MJ, Kerr T, Zhang R, Montaner JSG, Wood E. No evidence of increased sexual risk behaviour after initiating antiretroviral therapy among people who inject drugs. *AIDS* 2010,**24**:2271-2278.
- 12. Hawthorne G, Richardson J, Day NA. A comparison of the Assessment of Quality of Life (AQoL) with four other generic utility instruments. *Ann Med* 2001,**33**:358-370.
- 13. Simpson KN, Luo MP, Chumney E, Sun E, Brun S, Ashraf T. Cost-effectiveness of lopinavir/ritonavir versus nelfinavir as the first-line highly active antiretroviral therapy regimen for HIV infection. *HIV Clin Trials* 2004,**5**:294-304.
- 14. Tengs TO, Lin TH. A meta-analysis of utility estimates for HIV/AIDS. *Med Decis Making* 2002,**22**:475-481.
- 15. Revicki DA, Wu AW, Murray MI. Change in clinical status, health status, and health utility outcomes in HIV-infected patients. *Med Care* 1995,**33**:AS173-182.
- 16. Tsevat J, Sherman SN, McElwee JA, Mandell KL, Simbartl LA, Sonnenberg FA, *et al.* The will to live among HIV-infected patients. *Ann Intern Med* 1999,**131**:194-198.
- 17. Tsevat J, Solzan JG, Kuntz KM, Ragland J, Currier JS, Sell RL, *et al.* Health values of patients infected with human immunodeficiency virus. Relationship to mental health and physical functioning. *Med Care* 1996,**34**:44-57.
- 18. Kamal SM. Acute hepatitis C: a systematic review. *Am J Gastroenterol* 2008,**103**:1283-1297; quiz 1298.
- 19. Hsu PC, Krajden M, Yoshida EM, Anderson FH, Tomlinson GA, Krahn MD. Does cirrhosis affect quality of life in hepatitis C virus-infected patients? *Liver Int* 2009, **29**:449-458.

- 20. Thein HH, Krahn M, Kaldor JM, Dore GJ. Estimation of utilities for chronic hepatitis C from SF-36 scores. *Am J Gastroenterol* 2005,**100**:643-651.
- 21. Chong CA, Gulamhussein A, Heathcote EJ, Lilly L, Sherman M, Naglie G, *et al.* Health-state utilities and quality of life in hepatitis C patients. *Am J Gastroenterol* 2003,**98**:630-638.
- 22. Baggaley RF, Boily MC, White RG, Alary M. Risk of HIV-1 transmission for parenteral exposure and blood transfusion: a systematic review and meta-analysis. *Aids* 2006,**20**:805-812.
- 23. Hudgens MG, Longini IM, Jr., Vanichseni S, Hu DJ, Kitayaporn D, Mock PA, *et al.* Subtype-specific transmission probabilities for human immunodeficiency virus type 1 among injecting drug users in Bangkok, Thailand. *Am J Epidemiol* 2002,**155**:159-168.
- 24. Mellors JW, Munoz A, Giorgi JV, Margolick JB, Tassoni CJ, Gupta P, *et al.* Plasma viral load and CD4+ lymphocytes as prognostic markers of HIV-1 infection. *Ann Intern Med* 1997,**126**:946-954.
- 25. Ledergerber B, Lundgren JD, Walker AS, Sabin C, Justice A, Reiss P, *et al.* Predictors of trend in CD4-positive T-cell count and mortality among HIV-1-infected individuals with virological failure to all three antiretroviral-drug classes. *Lancet* 2004,**364**:51-62.
- 26. Mocroft A, Phillips AN, Gatell J, Ledergerber B, Fisher M, Clumeck N, *et al.* Normalisation of CD4 counts in patients with HIV-1 infection and maximum virological suppression who are taking combination antiretroviral therapy: an observational cohort study. *Lancet* 2007,**370**:407-413.
- 27. Smith CJ, Phillips AN, Hill T, Fisher M, Gazzard B, Porter K, *et al.* The rate of viral rebound after attainment of an HIV load <50 copies/mL according to specific antiretroviral drugs in use: Results from a multicenter cohort study. *Journal of Infectious Diseases* 2005,**192**:1387-1397.
- 28. Colette Smith, Antonella d'Arminio Monforte, Stephane de Wit, Nina Friis-Moller, Jens Lundgren, Andrew Philips, *et al.* Causes of death in the D:A:D study-initial results. In; 2008.
- 29. Bargagli AM, Hickman M, Davoli M, Perucci CA, Schifano P, Buster M, *et al.* Drug-related mortality and its impact on adult mortality in eight European countries. *The European Journal of Public Health* 2006,**16**:198-202.
- 30. Termorshuizen F, Krol A, Prins M, van Ameijden EJC. Long-term Outcome of Chronic Drug Use: The Amsterdam Cohort Study among Drug Users. *American Journal of Epidemiology* 2005,**161**:271-279.
- 31. Short LJ, Bell DM. Risk of occupational infection with blood-borne pathogens in operating and delivery room settings. *Am J Infect Control* 1993,**21**:343-350.
- 32. Gerberding JL. Management of Occupational Exposures to Blood-Borne Viruses. *New England Journal of Medicine* 1995, **332**:444.
- 33. MacDonald M, Crofts N, Kaldor J. Transmission of hepatitis C virus: rates, routes, and cofactors. *Epidemiol Rev* 1996, **18**:137-148.
- 34. Kiyosawa K, Sodeyama T, Tanaka E, Nakano Y, Furuta S, Nishioka K, *et al.* Hepatitis C in hospital employees with needlestick injuries. *Ann Intern Med* 1991,**115**:367-369.
- 35. Sodeyama T, Kiyosawa K, Urushihara A, Matsumoto A, Tanaka E, Furuta S, *et al.* Detection of hepatitis C virus markers and hepatitis C virus genomic-RNA after needlestick accidents. *Arch Intern Med* 1993,**153**:1565-1572.
- 36. Patz JA, Jodrey D. Occupational health in surgery: risks extend beyond the operating room. *Aust N Z J Surg* 1995, **65**:627-629.
- 37. Hamid SS, Farooqui B, Rizvi Q, Sultana T, Siddiqui AA. Risk of transmission and features of hepatitis C after needlestick injuries. *Infect Control Hosp Epidemiol* 1999,**20**:63-64.
- 38. De Carli G, Puro V, Ippolito G. Risk of hepatitis C virus transmission following percutaneous exposure in healthcare workers. *Infection* 2003,**31 Suppl 2**:22-27.
- 39. Santantonio T, Medda E, Ferrari C, Fabris P, Cariti G, Massari M, *et al.* Risk factors and outcome among a large patient cohort with community-acquired acute hepatitis C in Italy. *Clin Infect Dis* 2006,**43**:1154-1159.

- 40. Hofer H, Watkins-Riedel T, Janata O, Penner E, Holzmann H, Steindl-Munda P, *et al.* Spontaneous viral clearance in patients with acute hepatitis C can be predicted by repeated measurements of serum viral load. *Hepatology* 2003,**37**:60-64.
- 41. Thein HH, Yi Q, Dore GJ, Krahn MD. Estimation of stage-specific fibrosis progression rates in chronic hepatitis C virus infection: A meta-analysis and meta-regression. *Hepatology* 2008, **48**:418-431.
- 42. Thein HH, Yi Q, Dore GJ, Krahn MD. Natural history of hepatitis C virus infection in HIV-infected individuals and the impact of HIV in the era of highly active antiretroviral therapy: a meta-analysis. *Aids* 2008, **22**:1979-1991.
- 43. Bruno R, Sacchi P, Puoti M, Maiocchi L, Patruno S, Carosi G, *et al.* Natural history of compensated viral cirrhosis in a cohort of patients with HIV infection. *J Acquir Immune Defic Syndr* 2007,**46**:297-303.
- 44. Bruno S, Silini E, Crosignani A, Borzio F, Leandro G, Bono F, *et al.* Hepatitis C virus genotypes and risk of hepatocellular carcinoma in cirrhosis: a prospective study. *Hepatology* 1997,**25**:754-758.
- 45. Chiaramonte M, Stroffolini T, Vian A, Stazi MA, Floreani A, Lorenzoni U, *et al.* Rate of incidence of hepatocellular carcinoma in patients with compensated viral cirrhosis. *Cancer* 1999,**85**:2132-2137.
- 46. Degos F, Christidis C, Ganne-Carrie N, Farmachidi JP, Degott C, Guettier C, *et al.* Hepatitis C virus related cirrhosis: time to occurrence of hepatocellular carcinoma and death. *Gut* 2000,**47**:131-136.
- 47. del Olmo JA, Serra MA, Rodriguez F, Escudero A, Gilabert S, Rodrigo JM. Incidence and risk factors for hepatocellular carcinoma in 967 patients with cirrhosis. *J Cancer Res Clin Oncol* 1998,**124**:560-564.
- 48. Fattovich G, Giustina G, Degos F, Tremolada F, Diodati G, Almasio P, *et al.* Morbidity and mortality in compensated cirrhosis type C: a retrospective follow-up study of 384 patients. *Gastroenterology* 1997,**112**:463-472.
- 49. Fattovich G, Pantalena M, Zagni I, Realdi G, Schalm SW, Christensen E. Effect of hepatitis B and C virus infections on the natural history of compensated cirrhosis: a cohort study of 297 patients. *Am J Gastroenterol* 2002,**97**:2886-2895.
- 50. Gentilini P, Laffi G, La Villa G, Romanelli RG, Buzzelli G, Casini-Raggi V, *et al.* Long course and prognostic factors of virus-induced cirrhosis of the liver. *Am J Gastroenterol* 1997,**92**:66-72.
- 51. Hu KQ, Tong MJ. The long-term outcomes of patients with compensated hepatitis C virus-related cirrhosis and history of parenteral exposure in the United States. *Hepatology* 1999, **29**:1311-1316.
- 52. Hutchinson SJ, Bird SM, Goldberg DJ. Modeling the current and future disease burden of hepatitis C among injection drug users in Scotland. *Hepatology* 2005,**42**:711-723.
- 53. Ikeda K, Saitoh S, Koida I, Arase Y, Tsubota A, Chayama K, *et al.* A multivariate analysis of risk factors for hepatocellular carcinogenesis: a prospective observation of 795 patients with viral and alcoholic cirrhosis. *Hepatology* 1993, **18**:47-53.
- 54. Imberti D, Fornari F, Sbolli G, Buscarini E, Squassante L, Buscarini L. Hepatocellular carcinoma in liver cirrhosis. A prospective study. *Scand J Gastroenterol* 1993,**28**:540-544.
- 55. Niederau C, Lange S, Heintges T, Erhardt A, Buschkamp M, Hurter D, *et al.* Prognosis of chronic hepatitis C: results of a large, prospective cohort study. *Hepatology* 1998, **28**:1687-1695.
- 56. Nishiguchi S, Kuroki T, Nakatani S, Morimoto H, Takeda T, Nakajima S, *et al.* Randomised trial of effects of interferon-alpha on incidence of hepatocellular carcinoma in chronic active hepatitis C with cirrhosis. *Lancet* 1995,**346**:1051-1055.

- 57. Serfaty L, Aumaitre H, Chazouilleres O, Bonnand AM, Rosmorduc O, Poupon RE, *et al.* Determinants of outcome of compensated hepatitis C virus-related cirrhosis. *Hepatology* 1998,**27**:1435-1440.
- 58. Tsai JF, Jeng JE, Ho MS, Chang WY, Hsieh MY, Lin ZY, *et al.* Effect of hepatitis C and B virus infection on risk of hepatocellular carcinoma: a prospective study. *Br J Cancer* 1997,**76**:968-974.
- 59. Planas R, Balleste B, Alvarez MA, Rivera M, Montoliu S, Galeras JA, *et al.* Natural history of decompensated hepatitis C virus-related cirrhosis. A study of 200 patients. *J Hepatol* 2004,**40**:823-830.
- 60. Sweeting MJ, De Angelis D, Brant LJ, Harris HE, Mann AG, Ramsay ME. The burden of hepatitis C in England. *J Viral Hepat* 2007,**14**:570-576.
- 61. Krahn M, Wong JB, Heathcote J, Scully L, Seeff L. Estimating the prognosis of hepatitis C patients infected by transfusion in Canada between 1986 and 1990. *Med Decis Making* 2004,**24**:20-29.
- 62. Annual Surveillance Report: HIV/AIDS, viral hepatitis and sexually transmissible infections in Australia. In: National Centre in HIV Epidemiology and Clinical Research; 2008.
- 63. Charlton M, Seaberg E, Wiesner R, Everhart J, Zetterman R, Lake J, *et al.* Predictors of patient and graft survival following liver transplantation for hepatitis C. *Hepatology* 1998, **28**:823-830.
- 64. Gane EJ, Portmann BC, Naoumov NV, Smith HM, Underhill JA, Donaldson PT, *et al.* Long-term outcome of hepatitis C infection after liver transplantation. *N Engl J Med* 1996,**334**:815-820.
- 65. Razali K, Thein HH, Bell J, Cooper-Stanbury M, Dolan K, Dore G, *et al.* Modelling the hepatitis C virus epidemic in Australia. *Drug Alcohol Depend* 2007,**91**:228-235.
- 66. Estimates and projections of the Hepatitis C virus epidemic in Australia 2006. In: National Centre in HIV Epidemiology and Clinical Research. Hepatitis C Virus Projections Working Group; 2006.
- 67. Kamal SM. Acute hepatitis C: a systematic review. Am J Gastroenterol 2008,103:1283-1297.
- 68. Fried MW, Shiffman ML, Reddy KR, Smith C, Marinos G, Goncales FL, Jr., *et al.* Peginterferon alfa-2a plus ribavirin for chronic hepatitis C virus infection. *N Engl J Med* 2002,**347**:975-982.
- 69. Manns MP, McHutchison JG, Gordon SC, Rustgi VK, Shiffman M, Reindollar R, *et al.* Peginterferon alfa-2b plus ribavirin compared with interferon alfa-2b plus ribavirin for initial treatment of chronic hepatitis C: a randomised trial. *Lancet* 2001,**358**:958-965.
- 70. Micallef JM, Kaldor JM, Dore GJ. Spontaneous viral clearance following acute hepatitis C infection: a systematic review of longitudinal studies. *J Viral Hepat* 2006,**13**:34-41.
- 71. Kamal SM, Moustafa KN, Chen J, Fehr J, Abdel Moneim A, Khalifa KE, *et al.* Duration of peginterferon therapy in acute hepatitis C: a randomized trial. *Hepatology* 2006,**43**:923-931.
- 72. Kamal SM, Fouly AE, Kamel RR, Hockenjos B, Al Tawil A, Khalifa KE, *et al.* Peginterferon alfa-2b therapy in acute hepatitis C: impact of onset of therapy on sustained virologic response. *Gastroenterology* 2006,**130**:632-638.
- 73. Broers B, Helbling B, Francois A, Schmid P, Chuard C, Hadengue A, *et al.* Barriers to interferonalpha therapy are higher in intravenous drug users than in other patients with acute hepatitis C. *J Hepatol* 2005, **42**:323-328.
- 74. De Rosa FG, Bargiacchi O, Audagnotto S, Garazzino S, Cariti G, Calleri G, *et al.* Twelve-week treatment of acute hepatitis C virus with pegylated interferon- alpha -2b in injection drug users. *Clin Infect Dis* 2007,**45**:583-588.
- 75. De Rosa FG, Bargiacchi O, Audagnotto S, Garazzino S, Cariti G, Raiteri R, *et al.* Dose-dependent and genotype-independent sustained virological response of a 12 week pegylated interferon alpha-2b treatment for acute hepatitis C. *J Antimicrob Chemother* 2006, **57**:360-363.
- 76. Hadziyannis SJ, Sette H, Jr., Morgan TR, Balan V, Diago M, Marcellin P, *et al.* Peginterferonalpha2a and ribavirin combination therapy in chronic hepatitis C: a randomized study of treatment duration and ribavirin dose. *Ann Intern Med* 2004,**140**:346-355.

77. Krawitt EL, Gordon SR, Grace ND, Ashikaga T, Ray MA, Palmer M, *et al.* A study of low dose peginterferon alpha-2b with ribavirin for the initial treatment of chronic hepatitis C. *American Journal of Gastroenterology* 2006,**101**:1268-1273.